测绘学报 ›› 2024, Vol. 53 ›› Issue (1): 8-19.doi: 10.11947/j.AGCS.2024.20220350

• 摄影测量学与遥感 • 上一篇    下一篇

高光谱影像逆近邻密度峰值聚类的波段选择算法

孙根云1,2, 李忍忍1, 张爱竹1,2, 安娜3, 付航1, 潘兆杰1   

  1. 1. 中国石油大学(华东)海洋与空间信息学院, 山东 青岛 266580;
    2. 海洋国家实验室海洋矿产资源评价与探测技术功能实验室, 山东 青岛 266071;
    3. 中国自然资源航空物探遥感中心, 北京 100083
  • 收稿日期:2022-05-26 修回日期:2023-06-04 发布日期:2024-02-06
  • 通讯作者: 安娜 E-mail:an_na826@163.com
  • 作者简介:孙根云(1979-),男,博士,教授,博士生导师,主要研究方向智能遥感、环境遥感。E-mail:genyunsun@163.com
  • 基金资助:
    国家自然科学基金(42271347;41971292);科技部国家重点研发计划(2019YFE26700)

Band selection algorithm for reverse nearest neighbor density peak clustering of hyperspectral images

SUN Genyun1,2, LI Renren1, ZHANG Aizhu1,2, AN Na3, FU Hang1, PAN Zhaojie1   

  1. 1. College of Oceanography and Space Informatics, China University of Petroleum (East China), Qingdao 266580, China;
    2. Laboratory for Marine Mineral Resources, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China;
    3. China Aero Geophysical Survey and Remote Sensing Center for Natural Resources, Beijing 100083, China
  • Received:2022-05-26 Revised:2023-06-04 Published:2024-02-06
  • Supported by:
    The National Natural Science Foundation of China (Nos. 42271347;41971292); The National Key Research and Development Program of China (No. 2019YFE26700)

摘要: 密度峰值聚类波段选择算法利用局部密度描述波段的密度信息,然而现有的局部密度容易忽略波段分布的全局信息,不能有效描述波段的分布特征,导致波段子集分类精度有限。为解决上述问题,本文提出一种基于逆近邻的密度峰值聚类波段选择算法。首先,利用波段与其K近邻构建K近邻有向图,获取波段的逆近邻,以及波段之间的共享近邻和共享逆近邻;然后,利用共享近邻和共享逆近邻并集的个数作为波段之间的相似度,利用波段与其逆近邻的平均欧氏距离和相似度构造增强型局部密度;最后,将增强型局部密度、距离因子、信息熵三者的乘积作为权重值,根据权重值挑选波段子集。为提高试验效率和实用性,本文算法还提出一种自动获得K值的自适应K值方法。在3个高光谱标准数据集上的试验结果表明,本文算法得到的波段子集比其他先进算法挑选的波段有更好的分类性能,尤其是在波段数较少的情况下,而且计算效率较高。

关键词: 高光谱影像, 波段选择, 密度峰值聚类, 逆近邻, 局部密度, 自适应K

Abstract: The density peak clustering band selection algorithm uses the local density to describe the density information of the band. However, the existing local density is easy to ignore the global information of the band distribution and can't effectively describe the distribution characteristics of the band, resulting in the limited classification accuracy of the band subset. In order to solve the above problems, this paper proposes a density peak clustering band selection algorithm based on reverse nearest neighbor. Firstly, the K-nearest neighbor directed graph is constructed by using the band and its K-nearest neighbor to obtain the reverse nearest neighbor of the band, as well as the shared nearest neighbor and shared reverse nearest neighbor between bands. Then, the union number of shared nearest neighbors and shared reverse nearest neighbors is used as the similarity between bands, and the enhanced local density is constructed by using the average Euclidean distance and similarity between bands and their reverse nearest neighbors. Finally, the product of enhanced local density, distance factor and information entropy is taken as the weight value, and the segment subset is selected according to the weight value. In order to improve the efficiency and practicability of the experiment, an adaptive K value method is also proposed in this paper. The experimental results on three hyperspectral standard data sets show that the band subset obtained by this algorithm has better classification performance than the band selected by other advanced algorithms, especially when the number of bands is small, and the calculation efficiency is high.

Key words: hyperspectral image, band selection, density peak clustering, reverse nearest neighbor, local density, adaptive K value

中图分类号: