| [1] |
余东行, 徐青, 赵传, 等. 注意力引导特征融合与联合学习的遥感图像场景分类[J]. 测绘学报, 2023, 52(4): 624-637. DOI:.
doi: 10.11947/j.AGCS.2023.20210659
|
|
YU Donghang, XU Qing, ZHAO Chuan, et al. Attention-guided feature fusion and joint learning for remote sensing image scene classification[J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(4): 624-637. DOI:.
doi: 10.11947/j.AGCS.2023.20210659
|
| [2] |
夏英, 李骏垚, 郭东恩. 基于GAN的半监督遥感图像场景分类[J]. 光子学报, 2022, 51(3): 28-39.
|
|
XIA Ying, LI Junyao, GUO Dongen. Semi-supervised scene classification of remote sensing images based on GAN[J]. Acta Photonica Sinica, 2022, 51(3): 28-39.
|
| [3] |
马欣悦, 王梨名, 祁昆仑, 等. 基于多尺度循环注意力网络的遥感图像场景分类方法[J]. 地球科学, 2021, 46(10): 3740-3752.
|
|
MA Xinyue, WANG Liming, QI Kunlun, et al. Remote sensing image scene classification method based on multi-scale cyclic attention network[J]. Earth Science, 2021, 46(10): 3740-3752.
|
| [4] |
DOS SANTOS J, PENATTI O, TORRES R. Evaluating the potential of texture and color descriptors for remote sensing image retrieval and classification[C]//Proceedings of 2010 IEEE International Conference on Computer Vision Theory and Applications. Angers: IEEE, 2010, 2: 203-208.
|
| [5] |
CHEN Chen, ZHANG Baochang, SU Hongjun, et al. Land-use scene classification using multi-scale completed local binary patterns[J]. Signal, Image and Video Processing, 2016, 10(4): 745-752.
|
| [6] |
黄鸿, 徐科杰, 石光耀. 联合多尺度多特征的高分遥感图像场景分类[J]. 电子学报, 2020, 48(9): 1824-1833.
|
|
HUANG Hong, XU Kejie, SHI Guangyao. Scene classification of high-resolution remote sensing image by multi-scale and multi-feature fusion[J]. Acta Electronica Sinica, 2020, 48(9): 1824-1833.
|
| [7] |
TONG Xinyi, XIA Guisong, LU Qikai, et al. Land-cover classification with high-resolution remote sensing images using transferable deep models[J]. Remote Sensing of Environment, 2020, 237: 111322.
|
| [8] |
HE Hao, WANG Shuyang, WANG Shicheng, et al. A road extraction method for remote sensing image based on encoder decoder network[J]. Journal of Geodesy and Geoinformation Science, 2020, 3(2): 16-25.
|
| [9] |
DAI Yuchao, ZHANG Jing, HE Mingyi, et al. Salient object detection from multi-spectral remote sensing images with deep residual network[J]. Journal of Geodesy and Geoinformation Science, 2019, 2(2): 101-110.
|
| [10] |
SHI Jiacheng, LIU Wei, SHAN Haoyu, et al. Remote sensing scene classification based on multibranch fusion attention network[J]. IEEE Geoscience and Remote Sensing Letters, 2023, 20: 3262407.
|
| [11] |
JIN Jianhui, ZHOU Wujie, YE Lü, et al. DASFNet: dense-attention-similarity-fusion network for scene classification of dual-modal remote-sensing images[J]. International Journal of Applied Earth Observation and Geoinformation, 2022, 115: 103087.
|
| [12] |
GUO Haonan, SHI Qian, DU Bo, et al. Scene-driven multitask parallel attention network for building extraction in high-resolution remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(5): 4287-4306.
|
| [13] |
WANG Di, LAN Jinhui. A deformable convolutional neural network with spatial-channel attention for remote sensing scene classification[J]. Remote Sensing, 2021, 13(24): 5076.
|
| [14] |
施慧慧, 徐雁南, 滕文秀, 等. 高分辨率遥感影像深度迁移可变形卷积的场景分类法[J]. 测绘学报, 2021, 50(5): 652-663. DOI:.
doi: 10.11947/j.AGCS.2021.20200190
|
|
SHI Huihui, XU Yannan, TENG Wenxiu, et al. Scene classification of high-resolution remote sensing imagery based on deep transfer deformable convolutional neural networks[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(5): 652-663. DOI:.
doi: 10.11947/j.AGCS.2021.20200190
|
| [15] |
郑卓, 方芳, 刘袁缘, 等. 高分辨率遥感影像场景的多尺度神经网络分类法[J]. 测绘学报, 2018, 47(5): 620-630. DOI:.
doi: 10.11947/j.AGCS.2018.20170191
|
|
ZHENG Zhuo, FANG Fang, LIU Yuanyuan, et al. Joint multi-scale convolution neural network for scene classification of high resolution remote sensing imagery[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(5): 620-630. DOI:.
doi: 10.11947/j.AGCS.2018.20170191
|
| [16] |
WAN Huiyao, CHEN Jie, HUANG Zhixiang, et al. Lightweight channel attention and multiscale feature fusion discrimination for remote sensing scene classification[J]. IEEE Access, 2021, 9: 94586-94600.
|
| [17] |
ZHANG Shichao, WANG Changying, LI Jinhua, et al. MF-Dfnet: a deep learning method for pixel-wise classification of very high-resolution remote sensing images[J]. International Journal of Remote Sensing, 2022, 43(1): 330-348.
|
| [18] |
WANG Kexian, ZHENG Shunyi, LI Rui, et al. A deep double-channel dense network for hyperspectral image classification[J]. Journal of Geodesy and Geoinformation Science, 2021, 4(4): 46-62.
|
| [19] |
刘康, 周壮, 李盛阳, 等. 天宫一号高光谱遥感场景分类数据集及应用[J]. 遥感学报, 2020, 24(9): 1077-1087.
|
|
LIU Kang, ZHOU Zhuang, LI Shengyang, et al. Scene classification dataset using the Tiangong-1 hyperspectral remote sensing imagery and its applications[J]. Journal of Remote Sensing, 2020, 24(9): 1077-1087.
|
| [20] |
ZHOU Zhuang, LI Shengyang, WU Wei, et al. NaSC-TG2: natural scene classification with Tiangong-2 remotely sensed imagery[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 3228-3242.
|
| [21] |
徐科杰, 邓培芳, 黄鸿. HSRS-SC:面向遥感场景分类的高光谱图像数据集[J]. 中国图象图形学报, 2021, 26(8): 1809-1822.
|
|
XU Kejie, DENG Peifang, HUANG Hong. HSRS-SC: a hyperspectral image dataset for remote sensing scene classification[J]. Journal of Image and Graphics, 2021, 26(8): 1809-1822.
|
| [22] |
SINGH A, BRUZZONE L. WIANet: a wavelet-inspired attention-based convolution neural network for land cover classification[J]. IEEE Geoscience and Remote Sensing Letters, 2023, 20: 1-5.
|
| [23] |
XU Kejie, HUANG Hong, DENG Peifang. Attention-based deep feature learning network for scene classification of hyperspectral images[C]//Proceedings of 2021 IEEE Asilomar Conference on Signals, Systems, and Computers. Pacific Grove: IEEE, 2021: 1690-1693.
|
| [24] |
LIU Hao, QU Ying, ZHANG Liqiang. Multispectral scene classification via cross-modal knowledge distillation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 3174352.
|
| [25] |
WANG Guoqing, ZHANG Ning, LIU Wenchao, et al. MFST: a multi-level fusion network for remote sensing scene classification[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 3205417.
|
| [26] |
ZHENG Fujian, LIN Shuai, ZHOU Wei, et al. A lightweight dual-branch swin transformer for remote sensing scene classification[J]. Remote Sensing, 2023, 15(11): 2865.
|
| [27] |
HAO Siyuan, LI Nan, YE Yuanxin. Inductive biased swin-transformer with cyclic regressor for remote sensing scene classification[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2023, 16: 6265-6278.
|
| [28] |
ZHANG Zizhao, ZHANG Han, ZHAO Long, et al. Nested hierarchical transformer: towards accurate, data-efficient and interpretable visual understanding[C]//Proceedings of 2022 IEEE AAAI Conference on Artificial Intelligence. Virtual Event: IEEE, 2022, 36(3): 3417-3425.
|
| [29] |
XU Kejie, DENG Peifang, HUANG Hong. Vision transformer: an excellent teacher for guiding small networks in remote sensing image scene classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 3152566.
|
| [30] |
LIU Ze, LIN Yutong, CAO Yue, et al. Swin Transformer: hierarchical vision transformer using shifted windows[C]//Proceedings of 2021 IEEE/CVF International Conference on Computer Vision. Virtual Event: IEEE, 2021: 10012-10022.
|
| [31] |
HE Kaiming, ZHANG Xianyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770-778.
|
| [32] |
TAO Zeyi, XIA Qi, LI Qun. Neuron manifold distillation for edge deep learning[C]//Proceedings of 2021 International Symposium on Quality of Service. Tokyo: IEEE, 2021: 1-10.
|
| [33] |
刘英旭, 蒲春宇, 许典坤, 等. 面向高光谱影像场景分类的轻量化深度全局-局部知识蒸馏网络[J]. 光学精密工程, 2023, 31(17): 2598-2610.
|
|
LIU Yingxu, PU Chunyu, XU Diankun, et al. Lightweight deep global-local knowledge distillation network for hyperspectral image scene classification[J]. Optics and Precision Engineering, 2023, 31(17): 2598-2610.
|
| [34] |
CAO Ran, FANG Leyuan, LU Ting, et al. Self-attention-based deep feature fusion for remote sensing scene classification[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 18(1): 43-47.
|
| [35] |
CHEN Sibao, WEI Qingsong, WANG Wenzhong, et al. Remote sensing scene classification via multi-branch local attention network[J]. IEEE Transactions on Image Processing, 2022, 31: 99-109.
|
| [36] |
YAO Dazhi, SHAO Yunxue. A data efficient transformer based on Swin Transformer[J]. The Visual Computer, 2024, 40(4): 2589-2598.
|