[1] |
姚檀栋, 秦大河, 沈永平, 等. 青藏高原冰冻圈变化及其对区域水循环和生态条件的影响[J]. 自然杂志, 2013, 35(3): 179-186.
|
|
YAO Tandong, QIN Dahe, SHEN Yongping, et al. Cryospheric changes and their impacts on regional water cycle and ecological conditions in the Qinghai Tibetan Plateau[J]. Chinese Journal of Nature, 2013, 35(3): 179-186.
|
[2] |
陈德亮, 徐柏青, 姚檀栋, 等. 青藏高原环境变化科学评估:过去、现在与未来[J]. 科学通报, 2015, 60(32): 3025-3035.
|
|
CHEN Deliang, XU Baiqing, YAO Tandong, et al. Assessment of past, present and future environmental changes on the Tibetan Plateau[J]. Chinese Science Bulletin, 2015, 60(32): 3025-3035.
|
[3] |
RAN Youhua, CHENG Guodong, DONG Yuanhong, et al. Permafrost degradation increases risk and large future costs of infrastructure on the Third Pole[J]. Communications Earth & Environment, 2022, 3: 238.
|
[4] |
王一冰, 谢先红, 施建成, 等. 多源降水数据驱动下青藏高原径流集合模拟[J]. 科学通报, 2021, 66(32): 4169-4186.
|
|
WANG Yibing, XIE Xianhong, SHI Jiancheng, et al. Ensemble runoff modeling driven by multi-source precipitation products over the Tibetan Plateau[J]. Chinese Science Bulletin, 2021, 66(32): 4169-4186.
|
[5] |
张霞, 段建平, 马柱国. 基于日干旱指数的青藏高原1979—2020年干湿变化特征分析[J]. 高原气象, 2023, 42(4): 870-886.
|
|
ZHANG Xia, DUAN Jianping, MA Zhuguo. A daily drought index-based dry and wet variation analyses over the Qinghai-Xizang Plateau from 1979 to 2020[J]. Plateau Meteorology, 2023, 42(4): 870-886.
|
[6] |
周纪, 马燕飞, 丁利荣, 等. 西南河流源区能量收支关键参量的估算与数据集制备[M]. 北京: 科学出版社, 2022.
|
|
ZHOU Ji, MA Yanfei, DING Lirong. Estimation of key parameters of energy budget in southwest river source area and preparation of dataset[M]. Beijing: Science Press, 2022.
|
[7] |
国家市场监督管理总局,国家标准化管理委员会. 热红外遥感基本术语. GB/T 41541-2022[S]. 北京: 中国标准出版社, 2022: 3.
|
|
State Administration for Market Regulation, Standardization Administration. Basic terminology of thermal infrared remote sensing. GB/T 41541-2022. [S]. Beijing: Standard Press of China, 2022: 3.
|
[8] |
MA Yaoming, HU Zeyong, XIE Zhipeng, et al. A long-term (2005—2016) dataset of hourly integrated land-atmosphere interaction observations on the Tibetan Plateau[J]. Earth System Science Data, 2020, 12(4): 2937-2957.
|
[9] |
MA Jin, ZHOU Ji, GÖTTSCHE F M, et al. An atmospheric influence correction method for longwave radiation-based in situ land surface temperature[J]. Remote Sensing of Environment, 2023, 293: 113611.
|
[10] |
MA Jin, ZHOU Ji, LIU Shaomin, et al. Continuous evaluation of the spatial representativeness of land surface temperature validation sites[J]. Remote Sensing of Environment, 2021, 265: 112669.
|
[11] |
TORRES-RUA A. Vicarious calibration of sUAS microbolometer temperature imagery for estimation of radiometric land surface temperature[J]. Sensors (Basel, Switzerland), 2017, 17(7): 1499.
|
[12] |
SHEA C, JAMIESON B. Some fundamentals of handheld snow surface thermography[J]. The Cryosphere, 2011, 5(1): 55-66.
|
[13] |
SCHNEEBELI M, SOKRATOV S A. Tomography of temperature gradient metamorphism of snow and associated changes in heat conductivity[J]. Hydrological Processes, 2004, 18(18): 3655-3665.
|
[14] |
SCHIRMER M, JAMIESON B. Limitations of using a thermal imager for snow pit temperatures[J]. The Cryosphere, 2014, 8(2): 387-394.
|
[15] |
AUBRY-WAKE C, BARAER M, MCKENZIE J M, et al. Measuring glacier surface temperatures with ground-based thermal infrared imaging[J]. Geophysical Research Letters, 2015, 42(20): 8489-8497.
|
[16] |
HORI M, AOKI T, TANKIKAWA T, et al. Modeling angular-dependent spectral emissivity of snow and ice in the thermal infrared atmospheric window[J]. Applied optics, 2013, 52(30): 7243-7255.
|
[17] |
HORI M, AOKI T, TANIKAWA T, et al. In-situ measured spectral directional emissivity of snow and ice in the 8~14 μm atmospheric window[J]. Remote Sensing of Environment, 2006, 100(4): 486-502.
|