测绘学报 ›› 2024, Vol. 53 ›› Issue (9): 1799-1816.doi: 10.11947/j.AGCS.2024.20230363
• 摄影测量与遥感 • 上一篇
王密1(), 董滕滕1(), 彭涛1, 项韶1, 兰穹穹1,2
收稿日期:
2023-09-08
发布日期:
2024-10-16
通讯作者:
董滕滕
E-mail:wangmi@whu.edu.cn;2022206190049@whu.edu.cn
作者简介:
王密(1974—),男,博士,教授,博士生导师,研究方向为高分辨率光学卫星影像数据处理与智能服务。E-mail:wangmi@whu.edu.cn
基金资助:
Mi WANG1(), Tengteng DONG1(), Tao PENG1, Shao XIANG1, Qiongqiong LAN1,2
Received:
2023-09-08
Published:
2024-10-16
Contact:
Tengteng DONG
E-mail:wangmi@whu.edu.cn;2022206190049@whu.edu.cn
About author:
WANG Mi (1974—), male, PhD, professor, PhD supervisor, majors in high-resolution optical satellite imagery data processing and intelligent service. E-mail: wangmi@whu.edu.cn
Supported by:
摘要:
遥感影像在获取过程中会经常受到条带噪声的污染,降低遥感影像的视觉效果,对影像解译和反演等处理产生不利影响。当前一些主流的基于变分的条带噪声去除方法,虽然可以去除条带噪声,但是往往也会导致影像细节信息的严重丢失。基于上述问题,本文提出了一种基于细节信息约束的遥感影像条带噪声去除模型(DISUTV)。在DISUTV模型中,将所提出的基于双边滤波器与正交子空间投影的细节信息分离算子与单向全变分正则化项、群组稀疏正则化项及单向全变分正则约束项进行了有效结合,并采用交替方向乘子法对其进行求解,用于从条带噪声影像中获取不含有细节信息的高精度条带噪声。利用模拟数据与真实数据对本文方法的条带噪声去除能力、细节信息保持能力及稳健性进行了验证并与现有前沿方法进行了比较。试验结果表明,本文方法在去除条带噪声的同时能更好地保留影像的细节信息,并且呈现出了较好的定性与定量结果。
中图分类号:
王密, 董滕滕, 彭涛, 项韶, 兰穹穹. 基于细节信息约束的遥感影像条带噪声去除模型[J]. 测绘学报, 2024, 53(9): 1799-1816.
Mi WANG, Tengteng DONG, Tao PENG, Shao XIANG, Qiongqiong LAN. Remote sensing image stripe noise removal model based on detail information constraints[J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(9): 1799-1816.
表1
5个模拟数据的定量评估"
影像 | 指标 | WDLRWGS | UTV | LRTD | TVGF | DIRN | LRHP | 本文方法 |
---|---|---|---|---|---|---|---|---|
噪声影像1 | IS | 1.325 13 | 6.077 10 | 0.986 62 | 1.840 28 | 0.881 21 | 14.370 89 | 0.993 05 |
IM | 0.000 13 | 0.001 17 | 0.000 08 | 0.000 19 | 0.000 05 | 0.002 98 | 0.000 01 | |
SSIM | 0.977 67 | 0.905 25 | 0.997 33 | 0.998 74 | 0.989 06 | 0.773 78 | 0.999 63 | |
噪声影像2 | IS | 1.215 80 | 3.183 34 | 1.650 13 | 1.739 21 | 0.757 49 | 10.378 90 | 0.978 89 |
IM | 0.000 23 | 0.001 19 | 0.000 39 | 0.000 40 | 0.000 13 | 0.005 07 | 0.000 01 | |
SSIM | 0.979 99 | 0.907 89 | 0.998 48 | 0.998 14 | 0.986 54 | 0.923 52 | 0.999 32 | |
噪声影像3 | IS | 2.749 15 | 4.099 88 | 2.591 54 | 1.946 61 | 0.863 16 | 15.347 40 | 0.973 95 |
IM | 0.001 50 | 0.002 49 | 0.001 43 | 0.000 77 | 0.000 22 | 0.028 61 | 0.000 03 | |
SSIM | 0.875 91 | 0.788 50 | 0.982 69 | 0.972 57 | 0.885 28 | 0.724 37 | 0.985 58 | |
噪声影像4 | IS | 6.609 29 | 6.718 18 | 1.673 47 | 1.813 51 | 0.842 48 | 6.222 32 | 0.953 44 |
IM | 0.006 59 | 0.005 90 | 0.000 76 | 0.001 02 | 0.000 35 | 0.005 21 | 0.000 16 | |
SSIM | 0.981 85 | 0.857 07 | 0.996 58 | 0.993 45 | 0.987 90 | 0.929 46 | 0.998 97 | |
噪声影像5 | IS | 2.235 93 | 19.599 77 | 1.891 68 | 1.650 29 | 0.749 28 | 22.744 06 | 1.101 17 |
IM | 0.001 20 | 0.016 38 | 0.000 81 | 0.000 86 | 0.000 35 | 0.048 87 | 0.000 32 | |
SSIM | 0.974 46 | 0.880 79 | 0.995 36 | 0.981 21 | 0.967 33 | 0.815 50 | 0.995 67 |
表2
模拟数据在不同噪声水平下的定量评估"
影像 | 指标 | WDLRWGS | UTV | LRTD | TVGF | DIRN | LRHP | 本文方法 |
---|---|---|---|---|---|---|---|---|
测试影像1 | IS | 1.325 13 | 6.077 10 | 0.986 62 | 1.840 28 | 0.881 21 | 14.370 89 | 0.993 05 |
IM | 0.000 13 | 0.001 17 | 0.000 09 | 0.000 19 | 0.000 05 | 0.002 99 | 0.000 01 | |
SSIM | 0.977 67 | 0.905 25 | 0.997 33 | 0.998 74 | 0.989 06 | 0.773 78 | 0.999 63 | |
测试影像2 | IS | 1.136 28 | 4.365 11 | 0.918 53 | 1.328 23 | 0.701 87 | 9.796 84 | 0.980 72 |
IM | 0.000 15 | 0.001 12 | 0.000 11 | 0.000 11 | 0.000 19 | 0.002 99 | 0.000 01 | |
SSIM | 0.976 84 | 0.890 30 | 0.995 98 | 0.998 68 | 0.961 72 | 0.773 92 | 0.999 31 | |
测试影像3 | IS | 0.973 98 | 4.225 19 | 0.709 79 | 1.018 74 | 0.817 20 | 6.185 95 | 0.989 26 |
IM | 0.000 11 | 0.001 85 | 0.000 05 | 0.000 04 | 0.000 30 | 0.002 98 | 0.000 02 | |
SSIM | 0.973 98 | 0.883 26 | 0.994 00 | 0.997 32 | 0.933 51 | 0.773 83 | 0.998 15 | |
测试影像4 | IS | 1.491 04 | 2.413 47 | 1.108 92 | 1.481 22 | 0.724 29 | 4.399 20 | 0.952 36 |
IM | 0.000 62 | 0.001 40 | 0.000 42 | 0.000 50 | 0.000 46 | 0.003 00 | 0.000 06 | |
SSIM | 0.973 07 | 0.891 89 | 0.991 35 | 0.990 16 | 0.905 62 | 0.773 74 | 0.992 53 | |
测试影像5 | IS | 1.064 84 | 2.566 63 | 0.797 23 | 1.097 03 | 0.729 26 | 3.992 92 | 0.940 76 |
IM | 0.000 27 | 0.001 61 | 0.000 20 | 0.000 19 | 0.000 53 | 0.003 00 | 0.000 07 | |
SSIM | 0.970 85 | 0.897 71 | 0.989 06 | 0.989 22 | 0.892 17 | 0.773 49 | 0.990 71 |
表4
不同算法去噪能力与信息保持能力对比"
影像 | 指标 | 噪声影像 | WDLRWGS | UTV | LRTD | TVGF | DIRN | LRHP | 本文方法 |
---|---|---|---|---|---|---|---|---|---|
真实噪声影像1 | δ | 138.855 94 | 147.801 22 | 137.872 99 | 137.164 33 | 138.678 79 | 142.138 95 | 106.009 90 | 139.651 91 |
PSNR | 56.996 71 | 66.197 22 | 56.099 15 | 69.571 66 | 65.311 47 | 62.086 04 | 57.844 93 | 69.900 19 | |
SSIM | 0.854 24 | 0.979 09 | 0.945 11 | 0.993 16 | 0.989 97 | 0.932 50 | 0.843 57 | 0.993 47 | |
H | 6.604 80 | 6.560 11 | 6.431 75 | 6.555 04 | 6.575 33 | 6.564 55 | 6.427 18 | 6.593 57 | |
NR | 0 | 0.920 62 | 1.413 41 | 1.124 26 | 1.390 46 | 1.115 73 | 1.339 22 | 1.391 13 | |
真实噪声影像2 | δ | 323.049 52 | 328.230 63 | 316.036 46 | 316.548 27 | 323.549 80 | 319.592 59 | 265.940 65 | 323.565 86 |
PSNR | 63.470 20 | 65.751 399 | 63.119 75 | 65.701 25 | 67.668 15 | 65.892 48 | 63.351 93 | 74.613 66 | |
SSIM | 0.995 52 | 0.977 38 | 0.973 21 | 0.976 60 | 0.999 50 | 0.976 89 | 0.900 98 | 0.999 68 | |
H | 6.370 75 | 6.372 71 | 6.336 83 | 6.372 033 | 6.372 56 | 6.365 75 | 6.200 99 | 6.374 60 | |
NR | 0 | 0.939 95 | 1.202 94 | 0.958 07 | 1.096 46 | 1.041 65 | 1.072 50 | 1.116 32 |
[1] | SHEN Huanfeng, HUANG Liwen, ZHANG Liangpei, et al. Long-term and fine-scale satellite monitoring of the urban heat island effect by the fusion of multi-temporal and multi-sensor remote sensed data: a 26-year case study of the city of Wuhan in China[J]. Remote Sensing of Environment, 2016, 172:109-125. |
[2] | LI Xiaotong, ZHAO Xile, JIANG Taixiang, et al. Low-rank tensor completion via combined non-local self-similarity and low-rank regularization[J]. Neurocomputing, 2019, 367:1-12. |
[3] | DING Meng, HUANG Tingzhu, JI Tengyu, et al. Low-rank tensor completion using matrix factorization based on tensor train rank and total variation[J]. Journal of Scientific Computing, 2019, 81(2):941-964. |
[4] | ACITO N, DIANI M, CORSINI G. Subspace-based striping noise reduction in hyperspectral images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(4):1325-1342. |
[5] | KAMIRU L, HAKIM P R, HASBI W. An adaptive stripe noise removal algorithm for optical satellite imagery[C]//Proceedings of 2019 IEEE International Conference on Aerospace Electronics and Remote Sensing Technology. Yogyakarta: IEEE, 2019: 1-7. |
[6] | JIANG Hongxu, MIAO Rui, CHEN Jiao, et al. A resource-efficient parallel architecture for infrared image stripe noise removal based on the most stable window[J]. Infrared Physics & Technology, 2019, 97:258-269. |
[7] | 李文力, 李凯, 彭迪, 等. AGRI遥感图像中条带噪声的分析与去除[J]. 光学学报, 2019, 39(12):1228004. |
LI Wenli, LI Kai, PENG Di, et al. Analysis and removal of stripe noise in AGRI remote-sensing images[J]. Acta Optica Sinica, 2019, 39(12):1228004. | |
[8] | CUI Hao, JIA Peng, ZHANG Guo, et al. Multiscale intensity propagation to remove multiplicative stripe noise from remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(4):2308-2323. |
[9] | QU Yufu, ZHANG Xuan, WANG Qianyi, et al. Extremely sparse stripe noise removal from non remote-sensing images by straight line detection and neighborhood grayscale weighted replacement[J]. IEEE Access, 2018, 6:76924-76934. |
[10] | QU Xiaofei, ZHAO Weiwei, LONG En, et al. Removal of stripes in remote sensing images based on statistics combined with image enhancement[J]. Journal of Geodesy and Geoinformation Science, 2023, 6(1):76-87. |
[11] | 张霞, 孙伟超, 帅通, 等. 基于小波变换的图像条带噪声去除方法[J]. 遥感技术与应用, 2015, 30(6):1168-1175. |
ZHANG Xia, SUN Weichao, SHUAI Tong, et al. Image destriping method based on wavelet transform[J]. Remote Sensing Technology and Application, 2015, 30(6):1168-1175. | |
[12] | LI M, NONG S, NIE T, et al. An infrared stripe noise removal method based on multi-scale wavelet transform and multi-nomial sparse representation[J]. Computational Intelligence and Neuroscience, 2022:4044071. |
[13] | SHAO Yuyi, SUN Yingwei, ZHAO Mengmeng, et al. Infrared image stripe noise removing using least squares and gradient domain guided filtering[J]. Infrared Physics & Technology, 2021, 119:103968. |
[14] | 陈劲松, 邵芸, 朱博勤. 中分辨率遥感图像条带噪声的去除[J]. 遥感学报, 2004(3):227-233. |
CHEN Jinsong, SHAO Yun, ZHU Boqin. Removal of strip noise from medium-resolution remote sensing images[J]. Journal of Remote Sensing, 2004(3):227-233. | |
[15] | FAYYAZ Z, PLATNICK D, FAYYAZ H, et al. Deep unfolding for iterative stripe noise removal[C]//Prcoceedings of 2022 International Joint Conference on Neural Networks. Padua: IEEE, 2022: 1-7. |
[16] | GUAN Juntao, LAI Rui, XIONG Ai. Wavelet deep neural network for stripe noise removal[J]. IEEE Access, 2019, 7:44544-44554. |
[17] | BOUALI M, LADJAL S. Toward optimal destriping of MODIS data using a unidirectional variational model[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(8):2924-2935. |
[18] | LIU Na, LI Wei, TAO Ran, et al. Wavelet-domain low-rank/group-sparse destriping for hyperspectral imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(12):10310-10321. |
[19] | CHEN Yong, HUANG Tingzhu, ZHAO Xile. Destriping of multispectral remote sensing image using low-rank tensor decomposition[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(12):4950-4967. |
[20] | WANG Ende, JIANG Ping, LI Xuepeng, et al. Infrared stripe correction algorithm based on wavelet decomposition and total variation-guided filtering[J]. Journal of the European Optical Society-Rapid Publications, 2020, 16:1. |
[21] | ZHAO Shuheng, YUAN Qiangqiang, LI Jie, et al. A fast and effective irregular stripe removal method for moon mineralogy mapper (M3)[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60:1-19. |
[22] | WANG Chang, ZHANG Yongsheng, WANG Xu, et al. An effective strip noise removal method for remote sensing image[J]. Journal of Geodesy and Geoinformation Science, 2022, 5(4):72-85. |
[23] | 王昶, 王旭, 纪松. 采用变分法的遥感影像条带噪声去除[J]. 西安交通大学学报, 2019, 53(3):143-149. |
WANG Chang, WANG Xu, JI Song. Stripe noise removal of remote images based on variation[J]. Journal of Xi'an Jiaotong University, 2019, 53(3):143-149. | |
[24] | 陈柳, 陈明举, 吴浩, 等. 一种群稀疏限制的消除条带噪声变分模型[J]. 液晶与显示, 2020, 35(6):604-611. |
CHEN Liu, CHEN Mingju, WU Hao, et al. Variation model with group sparsity constraint for stripe noise removal[J]. Chinese Journal of Liquid Crystals and Displays, 2020, 35(6):604-611. | |
[25] | 李凯, 李文力, 韩昌佩. 基于L1范数优化模型的遥感图像条纹去除方法[J]. 红外与毫米波学报, 2021, 40(2):272-283. |
LI Kai, LI Wenli, HAN Changpei. Remote sensing image stripe removal method based on L1-paradigm optimization model[J]. Journal of Infrared and Millimeter Wave, 2021, 40(2):272-283. | |
[26] | CHANG Yi, YAN Luxin, WU Tao, et al. Remote sensing image stripe noise removal: from image decomposition perspective[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(12):7018-7031. |
[27] | ZHANG Shengwei, XIANG Wei, XU Baoshu, et al. Stripe noise removal for infrared images using guided filter[C]//Proceedings of 2016 Infrared Technology and Applications, and Robot Sensing and Advanced Control. Beijing: SPIE, 2016: 665-673. |
[28] | 鞠荟荟, 刘志刚, 姜江军, 等. 基于低通滤波残差图的高光谱条带噪声去除[J]. 光学学报, 2018, 38(12):361-369. |
JU Huihui, LIU Zhigang, JIANG Jiangjun, et al. Hyperspectral stripe noise removal based on low-pass filtered residual map[J]. Journal of Optics, 2018, 38(12):361-369. | |
[29] | REN Longfei, HONG Danfeng, GAO Lianru, et al. Orthogonal subspace unmixing to address spectral variability for hyperspectral image[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61:1-13. |
[30] | REN Longfei, WANG Chengjing, TANG Peipei, et al. A dual symmetric Gauss-Seidel alternating direction method of multipliers for hyperspectral sparse unmixing[J]. Numerical Algorithms, 2021, 87(2):719-754. |
[31] | REN Longfei, MA Zheng, BOVOLO F, et al. Hyperspectral unmixing using weighted sparse regression with total variation regularization[J]. International Journal of Remote Sensing, 2022, 43(15/16):6124-6151. |
[32] | YANG Jinghua, ZHAO Xile, MA Tianhui, et al. Remote sensing images destriping using unidirectional hybrid total variation and nonconvex low-rank regularization[J]. Journal of Computational and Applied Mathematics, 2020, 363:124-144. |
[33] | CHEN Yong, HUANG Tingzhu, ZHAO Xile, et al. Stripe noise removal of remote sensing images by total variation regularization and group sparsity constraint[J]. Remote Sensing, 2017, 9(6):559. |
[1] | 李佳, 焦利民. 土地利用碳收支精细化核算与时空特征分析[J]. 测绘学报, 2024, 53(8): 1480-1492. |
[2] | 鄢薪, 慎利, 潘俊杰, 戴延帅, 王继成, 郑晓莉, 李志林. 多尺度特征融合与空间优化的弱监督高分遥感建筑变化检测[J]. 测绘学报, 2024, 53(8): 1586-1597. |
[3] | 邢一波, 韩斌, 鲍秉坤. 基于L1范数混合主动轮廓的河流SAR图像分割[J]. 测绘学报, 2024, 53(8): 1598-1609. |
[4] | 谢志伟, 翟帅智, 张丰源, 陈旻, 孙立双. 面向对象高分影像归纳式图神经网络分类法[J]. 测绘学报, 2024, 53(8): 1610-1623. |
[5] | 徐涛, 杨元维, 高贤君, 王志威, 潘越, 李少华, 许磊, 王艳军, 刘波, 余静, 吴凤敏, 孙浩宇. 融合图卷积与多尺度特征的接触网点云语义分割[J]. 测绘学报, 2024, 53(8): 1624-1633. |
[6] | 陆科儒. 研发紫外遥感技术监测轮船排放的二氧化硫[J]. 测绘学报, 2024, 53(8): 1658-1658. |
[7] | 喜文飞. 基于双极值模糊集评判法的滑坡灾害危险性评价研究——以鲁甸县为例[J]. 测绘学报, 2024, 53(8): 1661-1661. |
[8] | 程结海, 黄中意, 王建如, 何湜. 高空间分辨率遥感影像最优分割结果自动确定方法[J]. 测绘学报, 2022, 51(5): 658-667. |
[9] | 梁哲恒, 黎宵, 邓鹏, 盛森, 姜福泉. 融合多尺度特征注意力的遥感影像变化检测方法[J]. 测绘学报, 2022, 51(5): 668-676. |
[10] | 白坤, 慕晓冬, 陈雪冰, 朱永清, 尤轩昂. 融合半监督学习的无监督遥感影像场景分类[J]. 测绘学报, 2022, 51(5): 691-702. |
[11] | 黄明益, 吴军, 高炯笠. 多镜头全景摄像机球面视频无缝生成[J]. 测绘学报, 2022, 51(5): 703-717. |
[12] | 王丹菂, 邢帅, 徐青, 林雨准, 李鹏程. 单频机载激光测深海陆回波自动分类方法[J]. 测绘学报, 2022, 51(5): 750-761. |
[13] | 张志敏. 基于遥感反照率的青藏高原冰川年际物质平衡估算研究[J]. 测绘学报, 2022, 51(5): 781-781. |
[14] | 李永强, 李鹏鹏, 董亚涵, 范辉龙. 车载LiDAR点云数据中杆状地物自动提取与分类[J]. 测绘学报, 2020, 49(6): 724-735. |
[15] | 王竞雪, 刘肃艳, 王伟玺. 联合共线约束与匹配冗余的组直线匹配结果检核算法[J]. 测绘学报, 2020, 49(6): 746-756. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||