测绘学报 ›› 2025, Vol. 54 ›› Issue (4): 603-620.doi: 10.11947/j.AGCS.2025.20230137

• 综述 • 上一篇    

光学遥感影像去云研究进展、挑战与趋势

张新长1,2,3(), 齐霁1,3(), 陶超4, 傅思扬5, 郭明宁4, 阮永检1,3   

  1. 1.广州大学地理科学与遥感学院,广东 广州 510006
    2.新疆大学地理与遥感科学学院,新疆 乌鲁木齐 830017
    3.广州大学黄埔研究院,广东 广州 510000
    4.中南大学地球科学与信息物理学院,湖南 长沙 410083
    5.中国电建集团中南勘测设计研究院有限公司,湖南 长沙 410014
  • 收稿日期:2024-03-29 发布日期:2025-05-30
  • 通讯作者: 齐霁 E-mail:zhangxc@gzhu.edu.cn;jameschi95@foxmail.com
  • 作者简介:张新长(1957—),男,博士,教授,研究方向为空间数据整合及自适应更新技术方法、数字城市(智慧城市)理论与方法、深度学习与自然资源要素分类和提取等。 E-mail:zhangxc@gzhu.edu.cn
  • 基金资助:
    国家自然科学基金(42371406);湖南省杰出青年基金(2022JJ10072);教育部人文社科青年基金(23YJC630145)

A survey on cloud removal in optical remote sensing images: progress, challenges, and future works

Xinchang ZHANG1,2,3(), Ji QI1,3(), Chao TAO4, Siyang FU5, Mingning GUO4, Yongjian RUAN1,3   

  1. 1.School of Geography and Remote Sensing, Guangzhou University, Guangzhou 510006, China
    2.College of Geography and Remote Sensing Sciences, Xinjiang University, Urumqi 830017, China
    3.Huangpu Research School of Guangzhou University, Guangzhou 510000, China
    4.School of Geosciences and Info-Physics, Central South University, Changsha 410083, China
    5.PowerChina Zhongnan Engineering Co. Ltd., Changsha 410014, China
  • Received:2024-03-29 Published:2025-05-30
  • Contact: Ji QI E-mail:zhangxc@gzhu.edu.cn;jameschi95@foxmail.com
  • About author:ZHANG Xinchang (1957—), male, PhD, professor, majors in spatial data integration and adaptive updating technologies, digital city (smart city) theories and methods, as well as deep learning and the classification and extraction of natural resource elements. E-mail: zhangxc@gzhu.edu.cn
  • Supported by:
    The National Natural Science Foundation of China(42371406);Natural Science Foundation of Hunan for Distinguished Young Scholars(2022JJ10072);Youth Foundation for Humanities and Social Sciences of the Ministry of Education(23YJC630145)

摘要:

光学遥感影像因蕴含丰富地物信息被广泛应用于各类对地观测任务中,但常常受到云层不同程度污染,导致其数据质量和利用率显著下降。目前,学者们已针对光学遥感影像去云问题开展了大量研究,然而仍缺乏系统性总结与技术原理分析。对此,本文首先基于文献计量分析手段,调查了国内外相关文献发表情况,分别对薄云和厚云去除两大类研究开展系统且全面的梳理;然后,深入分析了不同去云方法所面临的核心问题、依赖的先验假设、解决思路及基本原理,并评估了其优缺点;最后,本文进一步总结和探讨了当前光学遥感云去除工作所面临的共性关键挑战和未来发展趋势。本文不仅能为读者全面了解光学遥感影像去云领域近30年来的研究进展提供关键信息,也为深入把握该领域的发展脉络和趋势提供重要参考。

关键词: 光学遥感影像, 去云, 图像修复, 缺失信息重建

Abstract:

Optical remote sensing images (RSIs), which are widely used in various Earth observation tasks due to its rich geoinformation, are often significantly affected by varying degrees of cloud contamination, leading to a significant reduction in data quality and usability. Although extensive research has been conducted on cloud removal from optical RSIs, there is still a lack of systematic review and analysis in this field. To address this gap, this paper first employs bibliometric analysis to investigate the publication trends of relevant literature both domestically and internationally, revealing the long-term development dynamics of cloud removal research in RSIs. Subsequently, the paper then provides a comprehensive and systematic review of research on the removal of thin and thick clouds, thoroughly analyzing the core challenges, underlying assumptions, approaches, and fundamental principles of different cloud removal methods, while evaluating their strengths and weaknesses. Finally, this paper summarizes and discusses the common key challenges and future trends in current optical remote sensing cloud removal research. This paper not only offers crucial insights for readers to fully understand the research progress in optical remote sensing cloud removal over the past three decades but also serves as a valuable reference for grasping the development patterns and trends in this field.

Key words: optical remote sensing image, cloud removal, image restoration, missing information reconstruction

中图分类号: