测绘学报 ›› 2025, Vol. 54 ›› Issue (6): 1082-1093.doi: 10.11947/j.AGCS.2025.20240484

• 摄影测量学与遥感 • 上一篇    下一篇

顾及地形特征的大规模机载LiDAR点云高效滤波方法

徐联中1(), 陈传法1(), 陈东兴2, 王兴杰1, 杨子明1, 杨淑凡1, 洪壮壮1, 郝劲达1   

  1. 1.山东科技大学测绘与空间信息学院,山东 青岛 266590
    2.山东省煤田地质局第二勘探队,山东 济宁 272100
  • 收稿日期:2024-11-30 修回日期:2025-04-28 出版日期:2025-07-14 发布日期:2025-07-14
  • 通讯作者: 陈传法 E-mail:XU_Lianzhong@163.com;chencf@sdust.edu.cn
  • 作者简介:徐联中(1999—),男,硕士生,研究方向为三维点云智能处理。E-mail:XU_Lianzhong@163.com
  • 基金资助:
    国家自然科学基金(42271438);山东省自然科学基金(ZR2024MD040)

An efficient filtering method considering terrain features for large-scale airborne LiDAR point clouds

Lianzhong XU1(), Chuanfa CHEN1(), Dongxing CHEN2, Xingjie WANG1, Ziming YANG1, Shufan YANG1, Zhuangzhuang HONG1, Jinda HAO1   

  1. 1.College of Geodesy and Geomatics, Shandong University of Science and Technology, Qingdao 266590, China
    2.Shandong Coal Geology Bureau Second Exploration Team, Jining 272100, China
  • Received:2024-11-30 Revised:2025-04-28 Online:2025-07-14 Published:2025-07-14
  • Contact: Chuanfa CHEN E-mail:XU_Lianzhong@163.com;chencf@sdust.edu.cn
  • About author:XU Lianzhong (1999—), male, postgraduate, majors in intelligent processing of 3D point clouds. E-mail: XU_Lianzhong@163.com
  • Supported by:
    The National Natural Science Foundation of China(42271438);Shandong Provincial Natural Science Foundation, China(ZR2024MD040)

摘要:

针对现有滤波方法在复杂场景区大规模点云数据滤波精度低、计算效率慢,以及地形自适应差等难题,本文提出了一种顾及地形特征的大规模机载LiDAR点云高效滤波方法。首先,采用半径滤波和高程直方图法对原始点云预处理以剔除异常值;其次,借助滑动网格技术与M估计样本一致性算法相结合的策略,高效提取大量均匀分布的精确地面种子点;然后,根据地面点构建地面参考面网格,并采用基于网格的全局加权有限差分薄板样条方法快速生成地面参考面;最后,设计一种顾及地形特征的自适应高程阈值,捕捉各种类型地面点,进而完成点云滤波。为验证本文方法的有效性,采用大规模地面滤波数据集OpenGF进行试验分析。结果表明,本文方法平均总误差和Kappa系数分别为2.45%、94.54%,整体性能优于10种代表性滤波方法;同时,本文滤波方法计算效率也具有显著优势。

关键词: 点云滤波, 机载LiDAR, 地形自适应, 薄板样条

Abstract:

To solve the problems of low accuracy, slow computing speed and poor accuracy of the existing filtering methods for large-scale point cloud data in complex landscapes, an efficient filtering method considering terrain features for large-scale airborne LiDAR point clouds is proposed in this paper. Firstly, radius filtering and elevation histogram method are used to remove outliers from the raw point cloud. Secondly, a large number of evenly distributed ground seed points are efficiently extracted by combining the sliding grid with the M-estimation sample consistency algorithm. Then, the ground reference surface is constructed using a global weighted finite difference thin plate spline (TPS). Finally, a terrain-adaptive elevation threshold is designed to capture various types of ground points. In order to verify the effectiveness of the proposed method, a large-scale point cloud named OpenGF is used in the experiments. The results show that the average total error and Kappa coefficient of the proposed method are 2.45% and 94.54%, respectively, and its overall performance is much better than those of the 10 representative filtering methods. Moreover, the proposed method has a high computational efficiency.

Key words: point cloud filtering, airborne LiDAR, terrain-adaptive, thin plate spline

中图分类号: