测绘学报 ›› 2025, Vol. 54 ›› Issue (6): 1071-1081.doi: 10.11947/j.AGCS.2025.20230077

• 摄影测量学与遥感 • 上一篇    下一篇

一种利用目标变化估计相机姿态的马氏模型

刘佳音(), 李佳田(), 陈国坤, 阿晓荟, 韦晶晶, 胡浩   

  1. 昆明理工大学国土资源工程学院,云南 昆明 650093
  • 收稿日期:2023-12-19 修回日期:2025-02-24 出版日期:2025-07-14 发布日期:2025-07-14
  • 通讯作者: 李佳田 E-mail:1039427697@qq.com;ljtwcx@163.com
  • 作者简介:刘佳音(1997—),女,博士生,研究方向为摄影测量与遥感。E-mail:1039427697@qq.com
  • 基金资助:
    国家自然科学基金(41561082);公安部科技计划(2024YY44)

A Markov model for estimating camera pose using target changes

Jiayin LIU(), Jiatian LI(), Guokun CHEN, Xiaohui A, Jingjing WEI, Hao HU   

  1. Faculty of Land and Resources Engineering, Kunming University of Science and Technology, Kunming 650093, China
  • Received:2023-12-19 Revised:2025-02-24 Online:2025-07-14 Published:2025-07-14
  • Contact: Jiatian LI E-mail:1039427697@qq.com;ljtwcx@163.com
  • About author:LIU Jiayin (1997—), female, PhD candidate, majors in photogrammetry and remote sensing. E-mail: 1039427697@qq.com
  • Supported by:
    The National Natural Science Foundation of China(41561082);Ministry of Public Security Science and Technology Program(2024YY44)

摘要:

与相机姿态的物-像方特征点联合求解不同,本文提出一种利用目标变化估计相机姿态的马氏模型。该模型将姿态视为随物方观测目标变化的随机变量,描述并建立两者间的映射关系,具体内容为:①利用最小二乘法得到马氏回归模型,以求解状态转移矩阵;②依据初始相机位姿信息确定姿态转移矩阵,构建关于姿态参数的马氏关系式;③为克服单步偏差,嵌入多时序姿态转移矩阵调整模型结构,形成具备强稳健性的马氏姿态模型。试验结果表明:观测目标在平移、旋转及复合变化下,马氏模型均具有较好的表现,能够实现相机姿态的有效估计。

关键词: 相机姿态, 马尔可夫, 最小二乘, 多时序

Abstract:

Different from the joint solution of object-image point correspondences for camera pose estimation, we propose a Markov model for estimating camera pose using target changes, which considers the pose parameters as random variables based on the observation of object changes. The specific contributions are as follows. Firstly, using the least squares method to obtain the Markov regression model for solving the state transition matrix. Secondly, based on the priori information, determining the pose transition matrix based on the a priori information to construct a Markov model about the pose parameters. Lastly, a multi-temporal attitude matrix is embedded to correct the pose estimation bias, resulting in a robust Markov pose model. The experimental results show that the Markov model performs well under translation, rotation and composite variations of the observed target, and can realize the effective estimation of camera pose, which can overcome the deficiencies of the existing methods in the case of restricted feature points.

Key words: camera pose, Markov, least square, multi-temporal

中图分类号: