测绘学报 ›› 2025, Vol. 54 ›› Issue (7): 1243-1253.doi: 10.11947/j.AGCS.2025.20240225

• 摄影测量学与遥感 • 上一篇    下一篇

基于PCF-Net网络的建筑点云立面结构高精度提取

臧玉府1,2(), 王树野1, 董震3, 陈驰3, 黄荣刚4   

  1. 1.南京信息工程大学遥感与测绘工程学院,江苏 南京 210044
    2.自然资源部遥感导航一体化应用工程技术创新中心,江苏 南京 210044
    3.武汉大学精密测量科学与技术创新研究院精密大地测量与定位全国重点实验室,湖北 武汉 430079
    4.中国科学院测量与地球物理研究所大地测量与地球动力学国家重点实验室,湖北 武汉 430077
  • 收稿日期:2024-05-23 修回日期:2025-06-19 出版日期:2025-08-18 发布日期:2025-08-18
  • 作者简介:臧玉府(1987—),男,博士,副教授,研究方向为点云智能处理。E-mail:002767@nuist.edu.cn
  • 基金资助:
    国家自然科学基金(42171433);中国科学院精密测量科学与技术创新研究院精密大地测量与定位全国重点实验室开放基金(SKLPG2025-5-4);江苏省研究生科研与实践创新计划(KYCX22_1213)

High-precision extraction of building point cloud facade structure based on PCF-Net network

Yufu ZANG1,2(), Shuye WANG1, Zhen DONG3, Chi CHEN3, Ronggang HUANG4   

  1. 1.School of Remote Sensing & Geomatics Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
    2.Technology Innovation Center for Integrated Applications in Remote Sensing and Navigation, Ministry of Natural Resources, Nanjing 210044, China
    3.State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079, China
    4.State Key Laboratory of Precision Geodesy, Innovation Academy for Precision Measurement Science and Technology, CAS, Wuhan 430077, China
  • Received:2024-05-23 Revised:2025-06-19 Online:2025-08-18 Published:2025-08-18
  • About author:ZANG Yufu (1987—), male, PhD, associate professor, majors in point cloud intelligent processing. E-mail: 002767@nuist.edu.cn
  • Supported by:
    The National Natural Science Foundation of China(42171433);Open Fund of State Key Laboratory of Geodesy and Earth's Dynamics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences(SKLPG2025-5-4);Jiangsu Provincial Research and Practice Innovation Program for Graduate Students(KYCX22_1213)

摘要:

随着数字孪生城市、实景三维建设的应用与推广,基于三维点云城市高精度建模已成为重要研究课题,而建筑立面结构信息是辅助构建高精度三维城市模型的必要信息。因此,如何从点云数据中准确地提取建筑立面结构是精细化建模的研究前提。目前,基于深度学习的方法通过神经网络能理解复杂场景、实现目标精准分类,因而得到了广泛应用。然而,在建筑物立面场景中,点云数据存在遮挡严重、噪声极多、点密度差异大等问题,且立面各结构数量比例失衡严重(如门相对窗户的占比极小),使得现有方法难以满足建筑立面结构提取需求。针对该问题,本文围绕建筑立面结构提取在点云采样、特征提取和损失函数3个方面构建了PCF-Net深度学习神经网络。首先,在点云采样的过程中通过附上权重值增加小样本结构点云的比重;然后,设计双分支网络分别提取彩色点云的空间特征和纹理特征,并运用注意力机制自适应融合这两种模态特征,增强对建筑立面复杂场景的描述;最后,设计了顾及交并比(IoU)和提取精度(Acc)的双重约束损失函数以提高建筑立面结构提取的完整度与精确度。试验表明,本文提出的PCF-Net对多种类型的建筑立面提取结构结果分别达到了OA 97.99%,mAcc 97.80%和mIoU 95.75%的精度,而且对于小样本结构提取精度IoU都在90%以上。证明了本文提出的PCF-Net在提取复杂建筑立面结构时的有效性和高精度,为后续高精度三维建模提供了必要的技术支持。

关键词: 三维建模, 建筑立面语义解析, 点云采样, 双分支网络, 注意力融合, 损失函数

Abstract:

As the application and promotion of digital twin cities and realistic three-dimensional construction progresses, urban high-precision modeling based on 3D point clouds has become one of the important tasks. Building fa?ade structures can serve as prior knowledge to assist in the rapid construction of high-accuracy 3D urban models. Therefore, exploring how to accurately extract building fa?ade structures from point cloud data is a research focus in detailed modeling. Currently, methods based on deep learning can use neural networks to understand complex building fa?ades, but the extraction accuracy for less common structures in fa?ades (such as doors, external air conditioning units) is still not high enough. To address this issue, this paper develops a novel deep learning neural network, position color fusion-net (PCF-Net), focusing on the extraction of small-sample structures in building fa?ades across three aspects: point cloud sampling, feature extraction, and loss function. Initially, during the point cloud sampling process, the proportion of small-sample structure point clouds is increased by attaching weights. Subsequently, a dual-branch network is used to extract spatial features from the colored point clouds and texture features, with an attention mechanism applied to adaptively fuse these two types of features, enhancing the description of key details in building fa?ades. Finally, a loss function that considers both intersection over union (IoU) and extraction accuracy (Acc) constraints is designed to improve the completeness and precision of building fa?ade structure extraction. Experiments show that the proposed PCF-Net network achieves precision metrics of 97.99% OA, 97.80% mAcc, and 95.75% mIoU in extracting fine structures from various types of building fa?ades, demonstrating the network's superior performance in building fa?ade structure extraction (Project address: https://github.com/zangyufus/PCF_net.git).

Key words: 3D modeling, semantic parsing of building facades, point cloud sampling, dual-branch network, attention fusion, loss function

中图分类号: