测绘学报 ›› 2025, Vol. 54 ›› Issue (7): 1230-1242.doi: 10.11947/j.AGCS.2025.20240485

• 摄影测量学与遥感 • 上一篇    下一篇

DRformer:一种渐进式耦合多尺度CNN与浓缩注意力Transformer的高光谱图像超分辨率方法

程青(), 汪博轩, 张洪艳()   

  1. 中国地质大学(武汉)计算机学院,湖北 武汉 430074
  • 收稿日期:2024-12-03 修回日期:2025-07-01 出版日期:2025-08-18 发布日期:2025-08-18
  • 通讯作者: 张洪艳 E-mail:qingcheng@whu.edu.cn;zhanghongyan@cug.edu.cn
  • 作者简介:程青(1987—),女,博士,研究员,博士生导师,主要从事遥感信息处理与应用方面的研究。E-mail:qingcheng@whu.edu.cn
  • 基金资助:
    国家重点研发计划(2022YFB3903605);国家自然科学基金(42171383);武汉市自然科学基金(2024040801020278)

DRformer: a progressive coupled multiscale CNN and condensed attention Transformer method for hyperspectral image super-resolution

Qing CHENG(), Boxuan WANG, Hongyan ZHANG()   

  1. School of Computer Science, China University of Geosciences, Wuhan 430074, China
  • Received:2024-12-03 Revised:2025-07-01 Online:2025-08-18 Published:2025-08-18
  • Contact: Hongyan ZHANG E-mail:qingcheng@whu.edu.cn;zhanghongyan@cug.edu.cn
  • About author:CHENG Qing (1987—), female, PhD, researcher, PhD supervisor, majors in remote sensing information processing and applications. E-mail: qingcheng@whu.edu.cn
  • Supported by:
    The National Key Research and Development Program of China(2022YFB3903605);The National Natural Science Foundation of China(42171383);Natural Science Foundation of Wuhan(2024040801020278)

摘要:

高光谱图像超分辨率技术旨在通过提升低分辨率高光谱图像的空间细节和质量,使其更好地服务于环境监测等领域。近年来,基于深度卷积神经网络的机器学习技术在光谱单图超分辨率领域上有着广泛的发展与应用,但仍存在难以兼顾空间多尺度局部特征与全局细节特征学习的缺陷。对此,本文设计了一种基于渐进式采样策略耦合卷积神经网络与Transformer架构的融合网络DRformer。一方面,通过多尺度自适应加权光谱关注模块,用于局部特征的多尺度学习并选择性强调光谱信息特征并进行第一次上采样;另一方面,在网络后半段进行第二次上采样后融入基于Transformer架构构建的CADR模块,用于处理图像的全局特征,增强有效信息。为了验证本文方法的有效性与稳健性,选取Chikusei与Houston2013数据集开展试验,相较于已有的GDRRN、SSPSR、EUNet及MSDformer等深度学习方法具有更好的超分辨率性能,并且设计了消融试验以验证本文方法中各模块的有效性。

关键词: 高光谱图像, 超分辨率, Transformer, 注意力机制

Abstract:

The super-resolution technology of hyperspectral image aims to enhance the spatial detail and quality of low-resolution hyperspectral images for better applications in areas such as environmental monitoring. In recent years, machine learning techniques based on deep convolutional neural networks have made significant progress in single hyperspectral image super-resolution. However, challenges remain in balancing the learning of spatial multi-scale local features and global detail features. This paper presents a fusion network, DRformer, that integrates convolutional neural networks and Transformer architecture using a progressive sampling strategy. The network employs a multi-scale adaptive weighted spectral attention module for local feature extraction and selective emphasis of spectral information, followed by an initial upsampling. Subsequently, a CADR module based on the Transformer architecture is incorporated after a second upsampling to process global image features and enhance effective information. To verify the effectiveness and robustness of the network, experiments were conducted on the Chikusei and Houston2013 datasets. The results demonstrate that DRformer outperforms existing deep learning methods, including GDRRN, SSPSR, EUNet and MSDformer in terms of super-resolution performance. Additionally, ablation experiments were carried out to validate the effectiveness of each module in the network.

Key words: hyperspectral image, super-resolution, Transformer, attention mechanism

中图分类号: