测绘学报 ›› 2026, Vol. 55 ›› Issue (1): 46-58.

• 大地测量学与导航 • 上一篇    

基于SSA去噪的级联LSTM网络地球极移短期预报方法

张文渊1,2(), 彭劲松1(), 韦纳都3, 高雨1, 张书毕1,2   

  1. 1.中国矿业大学环境与测绘学院,江苏 徐州 221116
    2.中国矿业大学自然资源部国土环境与灾害监测重点实验室,江苏 徐州 221116
    3.科学技术部国际科技合作中心,北京 100862
  • 收稿日期:2025-03-07 修回日期:2025-09-15 发布日期:2026-02-13
  • 通讯作者: 彭劲松 E-mail:zhangwy@cumt.edu.cn;pjs@cumt.edu.cn
  • 作者简介:张文渊(1996—),男,博士,副教授,研究方向为GNSS大气探测及气候变化应用、GNSS数据处理及ERP预报。E-mail:zhangwy@cumt.edu.cn
  • 基金资助:
    国家自然科学基金(42404016);江苏省自然科学基金(BK20241669);中央高校基本科研业务费专项(2024QN11077);中国矿业大学研究生创新计划项目(2025WLJCRCZL230)

A short-term prediction method for Earth's polar motion using cascaded LSTM networks based on SSA denoising

Wenyuan ZHANG1,2(), Jinsong PENG1(), Nadu WEI3, Yu GAO1, Shubi ZHANG1,2   

  1. 1.School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China
    2.MNR Key Laboratory of Land Environment and Disaster Monitoring, China University of Mining and Technology, Xuzhou 221116, China
    3.International Science and Technology Cooperation Center, Ministry of Science and Technology of the People's Republic of China, Beijing 100862, China
  • Received:2025-03-07 Revised:2025-09-15 Published:2026-02-13
  • Contact: Jinsong PENG E-mail:zhangwy@cumt.edu.cn;pjs@cumt.edu.cn
  • About author:ZHANG Wenyuan (1996—), male, PhD, associate professor, majors in GNSS atmospheric monitoring and climate change applications, GNSS data processing, and ERP forecasting. E-mail: zhangwy@cumt.edu.cn
  • Supported by:
    The National Natural Science Foundation of China(42404016);Natural Science Foundation of Jiangsu Province(BK20241669);Fundamental Research Funds for the Central Universities(2024QN11077);Graduate Innovation Program of China University of Mining and Technology(2025WLJCRCZL230)

摘要:

地球极移是深空探测和卫星精密定轨的关键参数,其高精度预报模型是空间大地测量领域的研究热点。针对长短期记忆(LSTM)神经网络在短期预测中由于训练场景与应用场景不一致而导致的预测误差累积以及忽略信号噪声影响的问题,本文提出了一种基于奇异谱分析(SSA)去噪的级联LSTM网络地球极移短期预报方法。该方法首先利用SSA算法剔除极移时序信号的高频噪声项,随后充分考虑未来不同预测天数的场景特征变化,通过级联架构实现前序子模型输出与后续子模型输入的误差抵偿传导,构建了多个子模型相互连接、逐级传递的级联式LSTM框架。利用1984—2024年的EOP 20 C04序列数据进行了试验验证,结果表明:对于1~10天的短期预报,本文方法在极移XY方向的预测结果的平均绝对误差(MAE)分别为1.70和0.93 mas,相较于递归LSTM模型的MAE分别降低了42.8%和48.1%,同时相较于SSA-递归LSTM模型的预报精度分别提升了11.1%和28.8%。此外,本文模型在未来6~10天的极移预报中具有显著优势,论证了本文方法可有效抑制预报误差积累,提高中后期预报精度,将模型预报结果应用于卫星轨道的天球坐标系与地球坐标系转换,显著提升了坐标转换精度。

关键词: 地球极移, 短期预报, SSA, 级联LSTM, 去噪优化

Abstract:

Earth polar motion (PM), a pivotal geodynamic parameter governing deep space exploration and satellite precise orbit determination, necessitates high-precision prediction models that persist as a research focus in space geodesy. To address the issues of accumulated prediction errors caused by inconsistencies between training and application scenarios, as well as the effect of signal noise in long short-term memory (LSTM) neural networks, we propose a short-term PM prediction method with a cascaded LSTM architecture based on singular spectrum analysis (SSA) denoising. The proposed method first employs SSA to eliminate high-frequency noise components from polar motion time series signals. Subsequently, it fully considers the evolving scenario characteristics across different future prediction horizons, and constructs an interconnected cascaded LSTM framework where multiple sub-models are sequentially connected for progressive information transfer. The experimental results based on the EOP 20 C04 dataset spanning 1984 to 2024 demonstrate significant improvements: For 1~10 days short-term predictions, the proposed method achieves mean absolute errors (MAE) of 1.70 mas and 0.93 mas in the X and Y polar motion components, respectively. Compared to recursive LSTM baselines, the proposed model achieves 42.8% and 48.0% improvements, respectively. Furthermore, it outperforms existing SSA-recursive LSTM hybrid benchmarks by 11.0%and 28.5%in MAE reductions. Significantly, the cascaded architecture demonstrates superior predictive capability in 6~10 days forecasts, validating its effectiveness in mitigating error propagation while enhancing mid-to-long-term forecast stability. The prediction results are applied to the transformation between celestial and Earth coordinate systems for satellite orbits, significantly improving the accuracy of coordinate conversion.

Key words: Earth's polar motion, short-term prediction, singular spectrum analysis, cascaded LSTM, denoising optimization

中图分类号: