测绘学报 ›› 2021, Vol. 50 ›› Issue (5): 652-663.doi: 10.11947/j.AGCS.2021.20200190

• 摄影测量学与遥感 • 上一篇    下一篇

高分辨率遥感影像深度迁移可变形卷积的场景分类法

施慧慧1,2, 徐雁南1,2, 滕文秀3, 王妮4,5   

  1. 1. 南京林业大学南方现代林业协同创新中心, 江苏 南京 210037;
    2. 南京林业大学林学院, 江苏 南京 210037;
    3. 马萨诸塞大学阿默斯特分校地球科学系, 美国 马萨诸塞州 01003;
    4. 安徽省地理信息智能感知与服务工程实验室, 安徽 滁州 239000;
    5. 滁州学院地理信息与旅游学院, 安徽 滁州 239000
  • 收稿日期:2020-05-18 修回日期:2021-02-02 发布日期:2021-06-03
  • 通讯作者: 徐雁南 E-mail:nfuxyn@njfu.edu.cn
  • 作者简介:施慧慧(1996-),女,硕士生,主要研究方向为遥感影像信息提取与机器学习。E-mail:njfushihuihui@163.com
  • 基金资助:
    国家重点研发计划(2019YFD1100404)

Scene classification of high-resolution remote sensing imagery based on deep transfer deformable convolutional neural networks

SHI Huihui1,2, XU Yannan1,2, TENG Wenxiu3, WANG Ni4,5   

  1. 1. Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China;
    2. College of Forest, Nanjing Forestry University, Nanjing 210037, China;
    3. Department of Geosciences, University of Massachusetts, Massachusetts 01003, USA;
    4. Anhui Engineering Laboratory of Geographical Information Intelligent Sensor and Service, Chuzhou 239000, China;
    5. School of Geographic Information and Tourism, Chuzhou University, Chuzhou 239000, China
  • Received:2020-05-18 Revised:2021-02-02 Published:2021-06-03
  • Supported by:
    The National Key Research and Development Program of China (No. 2019YFD1100404)

摘要: 近年来基于深度卷积神经网络的高分辨率遥感影像场景分类成为广泛关注的焦点。由于现有深度卷积神经网络对遥感场景影像的几何形变不具有稳健性,本文提出了一种基于深度迁移可变形卷积神经网络(DTDCNN)的场景分类方法。该方法先利用大型自然场景数据集ImageNet上训练的深度模型提取遥感影像的深度特征,然后引入可变形卷积层,进一步学习对遥感场景的几何形变具有稳健性的深度特征。结果表明:增加可变形卷积后,DTDCNN在AID、UC-Merced和NWPU-RESISC45数据集上的精度分别提高了4.25%、1.9%和4.83%。该方法通过对场景中不同目标进行感受野自适应调整,增强了空间采样位置能力,有效提高了遥感场景分类的精度。

关键词: 遥感, 场景分类, 卷积神经网络, 可变形卷积, 迁移学习

Abstract: In recent years, scene classification of high-resolution remote sensing images based on deep convolutional neural networks has become the focus of attention. Because of the existing deep convolution neural network is not robust to the geometric deformation of remote sensing scene image, we proposed a novel scene classification method for high-resolution remote sensing image, based on the deep transfer deformable convolutional neural networks (DTDCNN). Specifically, the depth features of remote sensing image are extracted by using the trained depth model on the large-scale natural scene dataset (ImageNet), then, the deformable convolution layer is introduced to learn the depth features which are robust to the geometric deformation of remote sensing scene.The results show that:the accuracy of DTDCNN on AID, UC-Merced and NWPU-RESISC45 datasets is improved by 4.25%, 1.9% and 4.83% after adding the deformable convolution, respectively. By the adaptive adjustment of the receptive field for different objects in the scene, DTDCNN enhances the ability of spatial sampling position, and, effectively improves the accuracy of remote sensing scene classification.

Key words: remote sensing, scene classification, convolutional neural networks, deformable convolutional, transfer learning

中图分类号: