[1] ZHAO Qingzhi, DU Zheng, YAO Wanqiang, et al. Hybrid precipitable water vapor fusion model in China[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2020, 208:105387. [2] TAN Jingshu, CHEN Biyan, WANG Wei, et al. Evaluating precipitable water vapor products from Fengyun-4A meteorological satellite using radiosonde, GNSS, and ERA5 data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60:1-12. [3] LI Zhibo, SUN Ying, LI T, et al. Future changes in East Asian summer monsoon circulation and precipitation under 1.5 to 5℃of warming[J]. Earth's Future, 2019, 7(12):1391-1406. [4] ROSS R J, ELLIOTT W P. Radiosonde-based northern hemisphere tropospheric water vapor trends[J]. Journal of Climate, 2001, 14(7):1602-1612. [5] ALSHAWAF F, FUHRMANN T, KNOPFLER A, et al. Accurate estimation of atmospheric water vapor using GNSS observations and surface meteorological data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(7):3764-3771. [6] HICKS-JALALI S, SICA R J, MARTUCCI G, et al. A Raman LiDAR tropospheric water vapour climatology and height-resolved trend analysis over Payerne, Switzerland[J]. Atmospheric Chemistry and Physics, 2020, 20(16):9619-9640. [7] KAUFMAN Y J, GAO B C. Remote sensing of water vapor in the near IR from EOS/MODIS[J]. IEEE Transactions on Geoscience and Remote Sensing, 1992, 30(5):871-884. [8] BEVIS M, BUSINGER S, HERRING T A, et al. GPS meteorology:remote sensing of atmospheric water vapor using the global positioning system[J]. Journal of Geophysical Research:Atmospheres, 1992, 97(D14):15787-15801. [9] VAN MALDEREN R, BRENOT H, POTTIAUX E, et al. A multi-site intercomparison of integrated water vapour observations for climate change analysis[J]. Atmospheric Measurement Techniques, 2014, 7(8):2487-2512. [10] SOHND H, PARK K D, WON J H, et al. Comparison of the characteristics of precipitable water vapor measured by global positioning system and microwave radiometer[J]. Journal of Astronomy and Space Sciences, 2012, 29(1):1-10. [11] ZHAO Qingzhi, YAO Yibin, YAO Wanqiang, et al. GNSS-derived PWV and comparison with radiosonde and ECMWF ERA-Interim data over mainland China[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2019, 182:85-92. [12] ZHU Dantong, ZHANG Kefei, YANG Liu, et al. Evaluation and calibration of MODIS near-infrared precipitable water vapor over China using GNSS observations and ERA-5 reanalysis dataset[J]. Remote Sensing, 2021, 13(14):2761. [13] CHESTERS D, ROBINSON W D, UCCELLINI L W. Optimized retrievals of precipitable water from the VAS "split window"[J].Journal of Climate and Applied Meteorology, 1987, 26(8):1059-1066. [14] SCHULZ J, SCHLUESSEL P, GRASSL H. Water vapour in the atmospheric boundary layer over oceans from SSM/I measurements[J]. International Journal of Remote Sensing, 1993, 14(15):2773-2789. [15] KLEESPIES T J, MCMILLIN L M. Retrieval of precipitable water from observations in the split window over varying surface temperatures[J]. Journal of Applied Meteorology, 1990, 29(9):851-862. [16] GONG Shaoqi, HAGAN D F T, WU Xinyi, et al. Spatio-temporal analysis of precipitable water vapour over northwest China utilizing MERSI/FY-3A products[J]. International Journal of Remote Sensing, 2018, 39(10):3094-3110. [17] HE Jia, LIU Zhizhao. Comparison of satellite-derived precipitable water vapor through near-infrared remote sensing channels[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(12):10252-10262. [18] HE Jia, LIU Zhizhao. Water vapor retrieval from MODIS NIR channels using ground-based GPS data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(5):3726-3737. [19] 胡秀清, 黄意玢, 陆其峰, 等. 利用FY-3A近红外资料反演水汽总量[J]. 应用气象学报, 2011, 22(1):46-56. HU Xiuqing, HUANG Yifen, LU Qifeng, et al. Retrieving precipitable water vapor based on the near-infrared data of FY-3A satellite[J]. Journal of Applied Meteorological Science, 2011, 22(1):46-56. [20] HE Jia, LIU Zhizhao. Water vapor retrieval from MERSI NIR channels of Fengyun-3B satellite using ground-based GPS data[J]. Remote Sensing of Environment, 2021, 258:112384. [21] 赵庆志, 杜正, 姚顽强, 等. GNSS约束的MERSI/FY-3A PWV校准方法[J]. 测绘学报, 2022, 51(2):159-168.DOI:10.11947/j.AGCS.2022.20210060. ZHAO Qingzhi, DU Zheng, YAO Wanqiang, et al.The MERSI/FY-3A PWV correction method based on GNSS[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(2):159-168.DOI:10.11947/j.AGCS.2022.20210060. [22] 刘严萍, 曾昭扬, 王勇. 基于GNSS的中国西南地区MODIS水汽校正研究[J]. 大地测量与地球动力学, 2022, 42(4):389-392. LIU Yanping, ZENG Zhaoyang, WANG Yong. MODIS precipitable water vapor correction in southwest China based on GNSS[J]. Journal of Geodesy and Geodynamics, 2022, 42(4):389-392. [23] 曹艳丰, 陈宝献, 陈秀万, 等. 基于GPS数据的MODIS大气可降水量反演精度提高模型[J]. 遥感信息, 2014, 29(2):21-25. CAO Yanfeng, CHEN Baoxian, CHEN Xiuwan, et al. A real-time accuracy model of MODIS PWV using GPS PWV data[J]. Remote Sensing Information, 2014, 29(2):21-25. [24] CHEN Junping, YANG Sainan, TAN Weijie, et al. Recent results of the Chinese CMONOC GNSS network[C]//Proceedings of 2017 ION Pacific PNT Meeting. Honolulu:Institute of Navigation, 2017:539-546. [25] LI Qiang, YOU Xinzhao, YANG Shaomin, et al. A precise velocity field of tectonic deformation in China as inferred from intensive GPS observations[J]. Science China Earth Sciences, 2012, 55(5):695-698. [26] YAO Yibin, XU Chaoqian, ZHANG Bao, et al. GTm-Ⅲ:a new global empirical model for mapping zenith wet delays onto precipitable water vapour[J]. Geophysical Journal International, 2014, 197(1):202-212. [27] LIU Hailei, TANG Shihao, ZHANG Shenglan, et al. Evaluation of MODIS water vapour products over China using radiosonde data[J]. International Journal of Remote Sensing, 2015, 36(2):680-690. [28] ZHANG W, ZHANG H, LIANG H, et al. On the suitability of ERA5 in hourly GPS precipitable water vapor retrieval over China[J]. Journal of Geodesy, 2019, 93(10):1897-1909. [29] YAN Hongru, HUANG Jianping, HE Yongli, et al. Atmospheric water vapor budget and its long-term trend over the Tibetan Plateau[J]. Journal of Geophysical Research:Atmospheres, 2020, 125(23):e2020jd033297. [30] ZHANG Yonglin, CAI Changsheng, CHEN Biyan, et al. Consistency evaluation of precipitable water vapor derived from ERA5, ERA-interim, GNSS, and radiosondes over China[J]. Radio Science, 2019, 54(7):561-571. [31] RENNÓ C D, NOBRE A D, CUARTAS L A, et al. HAND, a new terrain descriptor using SRTM-DEM:mapping terra-firme rainforest environments in Amazonia[J]. Remote Sensing of Environment, 2008, 112(9):3469-3481. [32] BERRY P A M, GARLICK J D, SMITH R G. Near-global validation of the SRTM DEM using satellite radar altimetry[J]. Remote Sensing of Environment, 2007, 106(1):17-27. [33] 胡树贞, 马舒庆, 陶法, 等. 基于红外实时阈值的全天空云量观测[J]. 应用气象学报, 2013, 24(2):179-188. HU Shuzhen, MA Shuqing, TAO Fa, et al. An experiment study of all-sky cloud amount observation based on infrared real-time threshold[J]. Journal of Applied Meteorological Science, 2013, 24(2):179-188. [34] XU Jiafei, LIU Zhizhao. Radiance-based retrieval of total water vapor content from sentinel-3A OLCI NIR channels using ground-based GPS measurements[J]. International Journal of Applied Earth Observation and Geoinformation, 2021, 104:102586. [35] 李光伟, 黄彦彬, 敖杰, 等. GPS探测与FY-2反演大气可降水量对比分析[J]. 气象, 2018, 44(8):1082-1093. LI Guangwei, HUANG Yanbin, AO Jie, et al. Comparison of precipitable water retrieved by FY-2 satellite and GPS observations[J]. Meteorological Monthly, 2018, 44(8):1082-1093. [36] 赵有兵, 顾利亚, 黄丁发, 等. 利用MODIS影像反演大气水汽含量的方法研究[J]. 测绘科学, 2008, 33(5):51-53, 45. ZHAO Youbing, GU Liya, HUANG Dingfa, et al. Study on the atmospheric water vapor from MODIS image[J]. Science of Surveying and Mapping, 2008, 33(5):51-53, 45. [37] SEEMANN S W, BORBAS E E, LI J, et al. MODIS atmospheric profile retrieval algorithm theoretical basis document[EB/OL]. [2022-08-20].https://modis.gsfc.nasa.gov/data/atbd/atbd_mod07.pdf. [38] YAO Yibin, XU Xingyu, XU Chaoqian, et al. Establishment of a real-time local tropospheric fusion model[J]. Remote Sensing, 2019, 11(11):1321. [39] SHI Junbo, XU Chaoqian, GUO Jiming, et al. Local troposphere augmentation for real-time precise point positioning[J]. Earth, Planets and Space, 2014, 66(1):30. |