测绘学报 ›› 2024, Vol. 53 ›› Issue (2): 306-320.doi: 10.11947/j.AGCS.2024.20220538

• 大地测量学与导航 • 上一篇    下一篇

GNSS辅助风云三号卫星MERSI近红外通道的大气可降水量反演方法

赵庆志1, 马智1, 姚宜斌2, 杜正2   

  1. 1. 西安科技大学测绘科学与技术学院, 陕西 西安 710054;
    2. 武汉大学测绘学院, 湖北 武汉 430079
  • 收稿日期:2022-09-09 修回日期:2023-02-08 发布日期:2024-03-08
  • 作者简介:赵庆志(1989-),男,博士,副教授,研究方向为GNSS数据处理、GNSS和卫星遥感等多源多维水汽反演及其应用。E-mail:zhaoqingzhia@163.com
  • 基金资助:
    国家自然科学基金(42274039);中国博士后科学基金(2022T150523);陕西省教育厅服务地方专项科研计划(22JE012);陕西省创新能力支撑计划(2023KJXX-050)

GNSS-assisted FY-3 satellite atmospheric precipitable water retrieval method

ZHAO Qingzhi1, MA Zhi1, YAO Yibin2, DU Zheng2   

  1. 1. College of Geomatics, Xi'an University of Science and Technology, Xi'an 710054, China;
    2. School of Geodesy and Geomatics, Wuhan University, Wuhan 430079, China
  • Received:2022-09-09 Revised:2023-02-08 Published:2024-03-08
  • Supported by:
    The National Natural Science Foundation of China (No. 42274039); China Postdoctoral Science Foundation Program (No. 2022T150523); Shaanxi Provincial Department of Education Service Local Special Research Plan Project (No. 22JE012); Innovation Capability Support Program Project of Shaanxi (No. 2023KJXX-050)

摘要: 大气水汽是对流层中的重要参数之一,已被广泛应用于短临天气预警和长期气候监测等领域。我国风云三号(FY-3)系列卫星搭载的中分辨率光谱成像仪可用于大气水汽监测,但反演大气可降水量(PWV)时存在大气透过率参数低估、水汽与大气透过率回归系数经验选取的缺陷,无法满足在短临降雨监测、数值同化等高精度PWV应用方面的需求。针对该问题,本文提出一种GNSS辅助FY-3卫星的高精度PWV反演方法。本文方法引入高精度实测GNSS PWV作为大气透过率计算模型的回归拟合参数,辅助FY-3 L1级数据精确估计PWV和大气透过率的模型回归系数;同时,该方法顾及季节和高程因素对FY-3-L1 PWV反演的影响,分季节反演PWV并引入数字高程模型修正由于部分大气透过率参数低估导致的FY-3 L1 PWV相对不准确的现象。选取中国区域2013—2014年FY-3A卫星的L1数据和中国地壳运动观测网络的260个GNSS测站数据进行试验。结果表明,本文提出的GNSS辅助FY-3系列卫星PWV反演方法优于传统方法(FY-3A-L2 PWV),其整体精度改善率为74.5%,可得到更加可靠、稳健性更强的PWV格网产品,对于其在短临降雨监测和数值同化等方面具有重要意义。

关键词: GNSS, 风云三号卫星, PWV, 大气透过率参数

Abstract: Atmospheric water vapor is one of the important parameters in troposphere and has been widely used for short-term weather warning and long-term climate monitoring. The medium resolution spectral imager (MERSI) carried by FY-3 series satellites can be used for atmospheric water vapor monitoring, however, the atmospheric transmittance parameters are underestimated and the regression coefficients of water vapor and atmospheric transmittance are selected empirically when retrieving precipitable water vapor (PWV), which cannot meet the requirements of high-precision PWV applications such as short-term and imminent rainfall monitoring and numerical assimilation. Therefore, this paper proposes a high-precision PWV retrieval algorithm assisted by the global navigation satellite system (GNSS) for the FY-3 L1 data. This method introduces high-precision GNSS-derived PWV as the regression fitting parameter of the atmospheric transmittance calculation model, and assists the FY-3 L1 data to accurately estimate the model regression coefficients of PWV and atmospheric transmittance. In addition, this method considers the seasonal and elevation impact on PWV retrieval, and retrieves the PWV according to the season and corrects the FY-3-L1 PWV bias caused by the underestimation of some atmospheric transmittance parameters using digital elevation model. The L1 data of the FY-3 A satellite (FY-3A) and the data of 260 GNSS stations of the China crustal movement observation network in the Chinese region over the period of 2013 to 2014 were selected for the experiment. Results show that the GNSS-assisted FY-3 series satellite PWV retrieval algorithm proposed in this paper is superior to the traditional method (FY-3A-L2 PWV), and its overall accuracy improvement rate is 74.5%, and a more reliable and robust PWV grid product can be obtained,and it is of great significance for short-term and imminent rainfall monitoring and numerical assimilation.

Key words: GNSS, FY-3 satellite, PWV, atmospheric transmittance parameters

中图分类号: