测绘学报 ›› 2024, Vol. 53 ›› Issue (4): 610-619.doi: 10.11947/j.AGCS.2024.20230281

• 实时遥感测绘专栏 • 上一篇    下一篇

基于卷积神经网络的快速SAR自聚焦方法

刘志1(), 杨淑媛1(), 于子凡1, 冯志玺1, 高全伟1, 王敏2   

  1. 1.西安电子科技大学人工智能学院智能感知与图像理解教育部重点实验室,陕西 西安 710071
    2.西安电子科技大学电子工程学院雷达信号处理全国重点实验室,陕西 西安 710071
  • 收稿日期:2023-07-24 修回日期:2024-03-13 发布日期:2024-05-13
  • 通讯作者: 杨淑媛 E-mail:zhiliu@stu.xidian.edu.cn;syyang@xidian.edu.cn
  • 作者简介:刘志(1989—),男,博士,高级算法工程师,研究方向为深度学习和雷达信号处理。E-mail:zhiliu@stu.xidian.edu.cn
  • 基金资助:
    国家自然科学基金(62171357);陕西省科技厅自然科学基础研究计划面上项目(2023-JC-YB-524);陕西省教育科学“十三五”规划(SGH18H350)

Fast SAR autofocus based on convolutional neural networks

Zhi LIU1(), Shuyuan YANG1(), Zifan YU1, Zhixi FENG1, Quanwei GAO1, Min WANG2   

  1. 1.Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education, School of Artificial Intelligence, Xidian University, Xi'an 710071, China
    2.National Key Laboratory of Radar Signal Processing, School of Electronic Engineering, Xidian University, Xi'an 710071, China
  • Received:2023-07-24 Revised:2024-03-13 Published:2024-05-13
  • Contact: Shuyuan YANG E-mail:zhiliu@stu.xidian.edu.cn;syyang@xidian.edu.cn
  • About author:LIU Zhi (1989—), male, PhD, senior algorithm engineer, majors in deep learning and radar signal processing. E-mail: zhiliu@stu.xidian.edu.cn
  • Supported by:
    The National Natural Science Foundation of China(62171357);The Natural Science Basic Research Plan in Shaanxi Province of China(2023-JC-YB-524);The Education Scientific Program of the 13th Five-year Plan in Shaanxi Province of China(SGH18H350)

摘要:

自聚焦是SAR高分辨率成像的关键技术。然而,传统的SAR自聚焦方法均需要迭代多次,实时性差,不适合在轨处理。本文提出了一种基于卷积神经网络的在轨快速SAR自聚焦方法(CNN-AF),该方法采用卷积神经网络来学习失焦图像到聚焦图像的映射,主要用于校正方位向的相位误差,由于在测试阶段该方法无须迭代和调整参数,因此该方法实时性好,更加适用于在轨处理。在真实SAR数据上的试验结果表明,本文方法具有较高的聚焦质量和聚焦速度。

关键词: 卷积神经网络, SAR, 相位误差, 自聚焦

Abstract:

Autofocus is a key technology for high-resolution synthetic aperture radar imaging. However, traditional SAR autofocus methods require too many iterations, have low computational efficiency, and are unsuitable for on-orbit processing. This paper proposes a fast SAR autofocus method based on convolutional neural networks. This method utilizes CNNs to learn the mapping from defocused images to focused images, mainly designed to correct the azimuth phase errors. It has a real-time performance and is more suitable for on-orbit processing since it does not need to iterate or adjust parameters in the testing phase. Experimental results on real SAR data show that our proposed method has the highest focusing quality and speed.

Key words: convolutional neural networks, SAR, phase error, autofocus

中图分类号: