测绘学报 ›› 2024, Vol. 53 ›› Issue (6): 999-1012.doi: 10.11947/j.AGCS.2024.20230389

• 智能化测绘 • 上一篇    下一篇

面向未知环境的自主无人机智能感知测量技术

闫利1,2(), 赵英豪3, 戴集成1, 徐博1, 谢洪1,2(), 周玉泉1,2   

  1. 1.武汉大学测绘学院,湖北 武汉 430079
    2.湖北珞珈实验室,湖北 武汉 430079
    3.信息工程大学地理空间信息学院,河南 郑州 450001
  • 收稿日期:2023-09-06 发布日期:2024-07-22
  • 通讯作者: 谢洪 E-mail:lyan@sgg.whu.edu.cn;hxie@sgg.whu.edu.cn
  • 作者简介:闫利(1966—),男,教授,博士生导师,研究方向为摄影测量、遥感和三维激光扫描技术。 E-mail:lyan@sgg.whu.edu.cn
  • 基金资助:
    国家自然科学基金(42394061);湖北省重大科技项目(2021AAA010);湖北珞珈实验室开放基金(220100053)

Intelligent perception measurement technology of autonomous UAV for unknown environment

Li YAN1,2(), Yinghao ZHAO3, Jicheng DAI1, Bo XU1, Hong XIE1,2(), Yuquan ZHOU1,2   

  1. 1.School of Geodesy and Geomatics, Wuhan University, Wuhan 430079, China
    2.Hubei Luojia Laboratory, Wuhan 430079, China
    3.Institute of Surveying and Mapping, Information Engineering University, Zhengzhou 450001, China
  • Received:2023-09-06 Published:2024-07-22
  • Contact: Hong XIE E-mail:lyan@sgg.whu.edu.cn;hxie@sgg.whu.edu.cn
  • About author:YAN Li (1966—), male, professor, PhD supervisor, majors in photogrammetry, remote sensing and LiDAR. E-mail: lyan@sgg.whu.edu.cn
  • Supported by:
    The National Natural Science Foundation of China(42394061);The Science and Technology Major Project of Hubei Province(2021AAA010);Open Fund of Hubei Luojia Laboratory(220100053)

摘要:

智能化测绘的发展对数据采集高效性、完备性和智能性提出了更高的要求。尤其是在林下等GNSS拒止环境下,现有传统手段往往难以完成高效率、高覆盖率测量。为了满足未知环境的智能化感知测量需求,以无人机为移动平台,本文设计并提出了一种融合视觉在线自主定位及全局探测路径规划的自主无人机智能感知测量技术与总体框架。本文首先设计并采用了一种基于点线特征的VIO(visual-inertial odometry)在线定位算法,通过点线特征的提取和匹配进行初始位姿的解算,之后利用因子图优化实时地输出无人机高精度的位姿信息。进一步地,为了实现无人机对于未知环境高效且高覆盖率的自主测量,采用了一种顾及多层次信息的全局最优探测路径规划方法确定局部最佳探测目标,然后通过轨迹搜索和优化算法实时地生成高质量的探测运动轨迹。通过自主搭建无人机平台对该技术框架进行了验证,分步对比和总体真实试验表明框架设计并采用的定位及空间探测方法相较于目前具有代表性的方法具有明显优势,并且在GNSS拒止局部林下环境中实现了高效高覆盖率的全自主测量,为未知场景进一步的在线智能化感知奠定了良好的理论方法与框架基础。

关键词: 自主无人机, 智能感知测量技术与框架, 在线视觉定位, 自主规划与空间探测

Abstract:

The development of intelligent surveying and mapping puts higher requirements for efficient, complete, and intelligent data collection, especially in GNSS-denied environments such as under-canopy, where traditional methods frequently struggle to achieve efficient and high-coverage measurements. To address the need for intelligent perception measurement of unknown environments, this paper introduces a novel intelligent perception measurement unmanned aerial vehicle (UAV) technology and framework, using a UAV as a mobile platform. This paper integrates visual online autonomous localization with global exploration path planning. Initially, the framework incorporates a novel visual-inertial odometry (VIO) online localization algorithm based on point and line features, which solves the initial pose estimation through feature extraction and matching of point and line features, and then high-precision pose information of the UAV is generated in real-time using factor graph optimization. Furthermore, to ensure efficient and high-coverage autonomous UAV measurements in unknown environments, this paper employs a global optimal exploration path planning method that considers multi-level information to determine the local exploration targets, and then generates high-quality exploration trajectories in real time through trajectory search and optimization algorithm. Moreover, the framework was validated by a customized UAV platform, the step-by-step comparison and overall real-world test demonstrates that the localization and space exploration methods designed and adopted by the framework have significant advantages compared with the current representative methods. In addition, it achieves efficient and high-coverage full autonomous measurements in GNSS-denied local under-canopy environments, which establishes a solid theoretical and framework foundation for the further development of online intelligent perception in unknown scenarios.

Key words: autonomous UAV, intelligent perception measurements technology and framework, online visual localization, autonomous planning and space exploration

中图分类号: