测绘学报 ›› 2024, Vol. 53 ›› Issue (6): 1113-1127.doi: 10.11947/j.AGCS.2024.20230387
龚循强1,2(), 汪宏宇2,3(), 鲁铁定1,2, 游为3
收稿日期:
2023-09-05
发布日期:
2024-07-22
通讯作者:
汪宏宇
E-mail:xqgong1988@163.com;wanghyvv@foxmail.com
作者简介:
龚循强(1988—),男,博士,副教授,研究方向为重大交通工程智能监测。 E-mail:xqgong1988@163.com
基金资助:
Xunqiang GONG1,2(), Hongyu WANG2,3(), Tieding LU1,2, Wei YOU3
Received:
2023-09-05
Published:
2024-07-22
Contact:
Hongyu WANG
E-mail:xqgong1988@163.com;wanghyvv@foxmail.com
About author:
GONG Xunqiang (1988—), male, PhD, associate professor, majors in intelligent monitoring of major transportation engineering. E-mail: xqgong1988@163.com
Supported by:
摘要:
高铁桥墩不均匀沉降是导致轨道不平顺的潜在原因之一,准确预测桥墩沉降对于确保铁路建设和运营的可靠性和安全性具有重要意义。目前,常规时间序列领域的多数预测模型仅在预处理良好且没有缺失的数据集上进行测试,而在高铁桥墩沉降的真实场景中,沉降数据相较于其他领域存在观测频次少且不等时距,以及沉降规律复杂多变的问题,造成长期预测困难。为此,本文提出一种高铁桥墩沉降的通用渐进分解长期预测网络(GPDLPnet),摒弃传统的预处理思想,将预处理过程嵌入网络结构,在网络训练过程中实现渐进预处理。首先,GPDLPnet在每轮迭代中利用改进对角掩码自注意力模块分析沉降数据中的缺失模式。然后,通过改进完全自适应噪声集合经验模态分解模块将沉降数据分解并重构为高频、低频和趋势子分量,将子分量作为BiLSTM-RSA-Resnet预测模块的特征输入。最后,输出递归预测结果,从而实现高铁桥墩沉降的长期预测。结合实际工程数据,将数据划分为高频观测和低频观测两类典型的观测模式进行试验,在3~4个月的预测中GPDLPnet均表现出良好的预测性能,并在精度指标上优于其他7种模型。
中图分类号:
龚循强, 汪宏宇, 鲁铁定, 游为. 高铁桥墩沉降的通用渐进分解长期预测网络模型[J]. 测绘学报, 2024, 53(6): 1113-1127.
Xunqiang GONG, Hongyu WANG, Tieding LU, Wei YOU. A general progressive decomposition long-term prediction network model for high-speed railway bridge pier settlement[J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(6): 1113-1127.
表1
低频观测数据试验各模型精度指标"
模型 | A1 | A2 | B1 | B2 | ||||
---|---|---|---|---|---|---|---|---|
MAE | RMSE | MAE | RMSE | MAE | RMSE | MAE | RMSE | |
SVR | 1.267 | 1.302 | 1.365 | 1.414 | 1.126 | 1.196 | 1.327 | 1.353 |
LSTM | 1.185 | 1.212 | 1.240 | 1.550 | 1.191 | 1.229 | 1.361 | 1.382 |
CNN-LSTM | 1.213 | 1.247 | 1.155 | 1.188 | 1.203 | 1.248 | 1.148 | 1.171 |
CNN-Attention-LSTM | 1.061 | 1.095 | 0.813 | 0.905 | 1.145 | 1.192 | 1.083 | 1.107 |
BiLSTM | 1.002 | 1.037 | 1.092 | 1.119 | 1.552 | 1.576 | 1.422 | 1.439 |
CNN-BiLSTM | 1.481 | 1.513 | 1.021 | 1.083 | 1.045 | 1.091 | 1.262 | 1.282 |
Resnet | 0.597 | 0.696 | 1.245 | 1.307 | 1.031 | 1.096 | 0.555 | 0.678 |
GPDLPnet | 0.229 | 0.267 | 0.355 | 0.432 | 0.377 | 0.467 | 0.391 | 0.464 |
表2
高频观测数据试验各模型精度指标"
测点 | 模型 | SVR | LSTM | CNN-LSTM | CNN-Attention-LSTM | BiLSTM | CNN-BiLSTM | Resnet | GPDLPnet |
---|---|---|---|---|---|---|---|---|---|
E1 | MAE | 1.144 | 0.936 | 0.892 | 0.772 | 0.632 | 0.806 | 0.836 | 0.273 |
RMSE | 1.244 | 0.955 | 0.933 | 0.830 | 0.690 | 0.849 | 1.037 | 0.309 | |
E2 | MAE | 1.412 | 1.032 | 0.772 | 0.780 | 0.349 | 0.748 | 0.934 | 0.247 |
RMSE | 1.613 | 1.050 | 0.811 | 0.818 | 0.453 | 0.767 | 1.092 | 0.355 | |
F1 | MAE | 0.989 | 0.603 | 0.671 | 0.683 | 0.504 | 0.574 | 0.589 | 0.278 |
RMSE | 1.288 | 0.687 | 0.816 | 0.809 | 0.571 | 0.678 | 0.774 | 0.342 | |
F2 | MAE | 0.996 | 0.987 | 0.932 | 0.948 | 0.939 | 0.648 | 0.641 | 0.259 |
RMSE | 1.163 | 1.154 | 1.061 | 1.106 | 1.099 | 0.768 | 0.764 | 0.335 | |
G1 | MAE | 0.459 | 0.675 | 0.408 | 0.337 | 0.381 | 0.350 | 0.437 | 0.157 |
RMSE | 0.571 | 0.746 | 0.471 | 0.433 | 0.457 | 0.439 | 0.506 | 0.242 | |
G2 | MAE | 0.615 | 0.482 | 0.353 | 0.271 | 0.774 | 0.345 | 0.673 | 0.233 |
RMSE | 0.692 | 0.538 | 0.395 | 0.304 | 0.873 | 0.372 | 0.821 | 0.263 | |
H1 | MAE | 0.785 | 1.117 | 1.175 | 0.938 | 1.163 | 1.023 | 0.639 | 0.423 |
RMSE | 0.953 | 1.205 | 1.278 | 1.008 | 1.243 | 1.106 | 0.823 | 0.533 | |
H2 | MAE | 0.663 | 0.803 | 0.855 | 0.902 | 0.907 | 0.875 | 0.315 | 0.204 |
RMSE | 0.736 | 0.918 | 1.001 | 1.049 | 1.025 | 1.009 | 0.401 | 0.243 |
[1] | 黎奇, 白征东, 陈波波, 等. GNSS/INS多传感器组合高速铁路轨道测量系统[J]. 测绘学报, 2020, 49(5):569-579. DOI:10.11947/j.AGCS.2020.20190344. |
LI Qi, BAI Zhengdong, CHEN Bobo, et al. A novel track measurement system based on GNSS/INS and multisensor for high-speed railway[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(5):569-579. DOI:10.11947/j.AGCS.2020.20190344. | |
[2] | 中国铁路总公司. 铁路工程沉降变形观测与评估技术规程Q/CR 9230—2016[S]. 北京: 中国铁道出版社, 2016. |
China Railway Corporation. Observation and evaluation specification for settlement deformation of railway engineering Q/CR 9230—2016[S]. Beijing: China Railway Publishing House, 2016. | |
[3] | 张献州, 夏晨翕, 陈霄, 等. IGM-FM串联模型在高铁路基沉降预测中的应用[J]. 重庆交通大学学报(自然科学版), 2020, 39(11):99-108. |
ZHANG Xianzhou, XIA Chenxi, CHEN Xiao, et al. Application of series IGM-FM combination model in prediction of subgrade settlement of high-speed railway[J]. Journal of Chongqing Jiaotong University (Natural Science), 2020, 39(11):99-108. | |
[4] | GONG X, LI Z. Bridge pier settlement prediction in high-speed railway via autoregressive model based on robust weighted total least-squares[J]. Survey Review, 2018, 50(359):147-154. |
[5] | GONG Xunqiang, WANG Hongyu, LU Tieding, et al. Combined prediction model for high-speed railway bridge pier settlement based on robust weighted total least-squares autoregression and adaptive dynamic cubic exponential smoothing[J]. Journal of Surveying Engineering, 2023, 149(2):04023001. |
[6] | 王秀英, 雷可, 王滕, 等. 洞桩法车站下穿既有管线工程的沉降预测[J]. 土木工程学报, 2021, 54(S1):65-75. |
WANG Xiuying, LEI Ke, WANG Teng, et al. Settlement prediction of tunnel pile method station under existing pipeline project[J]. China Civil Engineering Journal, 2021, 54(S1):65-75. | |
[7] | 陈军, 刘万增, 武昊, 等. 智能化测绘的基本问题与发展方向[J]. 测绘学报, 2021, 50(8):995-1005. DOI:10.11947/j.AGCS.2021.20210235. |
CHEN Jun, LIU Wanzeng, WU Hao, et al. Smart surveying and mapping: fundamental issues and research agenda[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(8):995-1005. DOI:10.11947/j.AGCS.2021.20210235. | |
[8] | 陈军, 王艳慧, 武昊, 等. 时空信息赋能高质量发展的基本问题与发展方向[J]. 时空信息学报, 2023, 30(1):1-11. |
CHEN Jun, WANG Yanhui, WU Hao, et al. Basic issues and development directions of high-quality development empowered by spatio-temporal information[J]. Journal of Spatio-Temporal Information, 2023, 30(1):1-11. | |
[9] | 郭澳庆, 胡俊, 郑万基, 等. 时序InSAR滑坡形变监测与预测的N-BEATS深度学习法:以新铺滑坡为例[J]. 测绘学报, 2022, 51(10):2171-2182. DOI:10.11947/j.AGCS.2022.20220298. |
GUO Aoqing, HU Jun, ZHENG Wanji, et al. N-BEATS deep learning method for landslide deformation monitoring and prediction based on InSAR: a case study of Xinpu landslide[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(10):2171-2182. DOI:10.11947/j.AGCS.2022.20220298. | |
[10] | 禹文豪, 魏铖, 陈佳鑫. 面向不平衡POI类别分布的电子地图多层次标签预测模型[J]. 测绘学报, 2023, 52(2):318-328. DOI:10.11947/j.AGCS.2023.20210451. |
YU Wenhao, WEI Cheng, CHEN Jiaxin. Predicting the unbalanced labels of POIs on digital maps using hierarchical model[J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(2):318-328. DOI:10.11947/j.AGCS.2023.20210451. | |
[11] | MACKENZIE J, RODDICK J F, ZITO R. An evaluation of HTM and LSTM for short-term arterial traffic flow prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(5):1847-1857. |
[12] | 冯非凡, 武雪玲, 牛瑞卿, 等. 一种V/S和LSTM结合的滑坡变形分析方法[J]. 武汉大学学报(信息科学版), 2019, 44(5):784-790. |
FENG Feifan, WU Xueling, NIU Ruiqing, et al. A landslide deformation analysis method using V/S and LSTM[J]. Geomatics and Information Science of Wuhan University, 2019, 44(5):784-790. | |
[13] | ZHENG Haifeng, LIN Feng, FENG Xinxin, et al. A hybrid deep learning model with attention-based conv-LSTM networks for short-term traffic flow prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(11):6910-6920. |
[14] | 周于涛, 吴华意, 成洪权, 等. 结合自注意力机制和结伴行为特征的行人轨迹预测模型[J]. 武汉大学学报(信息科学版), 2020, 45(12):1989-1996. |
ZHOU Yutao, WU Huayi, CHENG Hongquan, et al. Pedestrian trajectory prediction model based on self-attention mechanism and group behavior characteristics[J]. Geomatics and Information Science of Wuhan University, 2020, 45(12):1989-1996. | |
[15] | 王利, 许豪, 舒宝, 等. 利用互信息和IPSO-LSTM进行滑坡监测多源数据融合[J]. 武汉大学学报(信息科学版), 2021, 46(10):1478-1488. |
WANG Li, XU Hao, SHU Bao, et al. A multi-source heterogeneous data fusion method for landslide monitoring with mutual information and IPSO-LSTM neural network[J]. Geomatics and Information Science of Wuhan University, 2021, 46(10):1478-1488. | |
[16] | LI Guannan, ZHAO Xiaowei, FAN Cheng, et al. Assessment of long short-term memory and its modifications for enhanced short-term building energy predictions[J]. Journal of Building Engineering, 2021, 43:103182. |
[17] | 陈军, 艾廷华, 闫利, 等. 智能化测绘的混合计算范式与方法研究[J/OL]. 测绘学报: 1-19 [2024-05-20].http://kns.cnki.net/kcms/detail/11.2089.P.20240415.1049.002.html. |
CHEN Jun, AI Tinhua, YAN Li, et al. Hybrid computational paradigm and methods for intelligentized surveying and mapping[J/OL]. Acta Geodaetica et Cartographica Sinica: 1-19 [2024-05-20].http://kns.cnki.net/kcms/detail/11.2089.P.20240415.1049.002.html. | |
[18] | CHEN X, SUN L. Bayesian temporal factorization for multidimensional time series prediction[J]. IEEE Trans Pattern Anal Mach Intell, 2022, 44(9):4659-4673. |
[19] | PURWINS H, LI Bo, VIRTANEN T, et al. Deep learning for audio signal processing[J]. IEEE Journal of Selected Topics in Signal Processing, 2019, 13(2):206-219. |
[20] | 李新琴, 史天运, 李平, 等. 基于文本的高速铁路信号设备故障知识抽取方法研究[J]. 铁道学报, 2021, 43(3):92-100. |
LI Xinqin, SHI Tianyun, LI Ping, et al. Research on knowledge extraction method for high-speed railway signal equipment fault based on text[J]. Journal of the China Railway Society, 2021, 43(3):92-100. | |
[21] | DU Wenjie, CÔTÉ D, LIU Yan. SAITS: self-attention-based imputation for time series[J]. Expert Systems with Applications, 2023, 219:119619. |
[22] | HUANG Jin, ZHANG Tinghua, ZHU Jia, et al. A deep embedding model for knowledge graph completion based on attention mechanism[J]. Neural Computing and Applications, 2021, 33(15):9751-9760. |
[23] | 罗亦泳, 黄城, 张静影. 基于变分模态分解的变形监测数据去噪方法[J]. 武汉大学学报(信息科学版), 2020, 45(5):784-790. |
LUO Yiyong, HUANG Cheng, ZHANG Jingying. Denoising method of deformation monitoring data based on variational mode decomposition[J]. Geomatics and Information Science of Wuhan University, 2020, 45(5):784-790. | |
[24] | 邢世玲, 吕双双, 朱利明, 等. 基于ICEEMDAN的连续梁桥车致振动信号的HHT分析[J]. 西南交通大学学报, 2021, 56(3):477-484, 492. |
XING Shiling, LÜ Shuangshuang, ZHU Liming, et al. Hilbert-Huang transfer analysis on vehicle-induced vibration signal of continuous bridges based on ICEEMDAN[J]. Journal of Southwest Jiaotong University, 2021, 56(3):477-484, 492. | |
[25] | 程肇兰, 张小强, 梁越. 基于LSTM网络的铁路货运量预测[J]. 铁道学报, 2020, 42(11):15-21. |
CHENG Zhaolan, ZHANG Xiaoqiang, LIANG Yue. Railway freight volume prediction based on LSTM network[J]. Journal of the China Railway Society, 2020, 42(11):15-21. | |
[26] | YANG C, KIM T, WANG R, et al. Show, attend, and translate: unsupervised image translation with self-regularization and attention[J]. IEEE Trans Image Process, 2019, 28(10):4845-4856. |
[27] | 张淑清, 杜灵韵, 王册浩, 等. 基于格拉姆角场与改进CNN-ResNet的风电功率预测方法[J]. 电网技术, 2023, 47(4):1540-1547. |
ZHANG Shuqing, DU Lingyun, WANG Cehao, et al. Wind power forecasting method based on GAF and improved CNN-ResNet[J]. Power System Technology, 2023, 47(4):1540-1547. | |
[28] | CAO Pei, ZHANG Shengli, TANG Jiong. Preprocessing-free gear fault diagnosis using small datasets with deep convolutional neural network-based transfer learning[J]. IEEE Access, 2018, 6:26241-26253. |
[29] | ZHANG X, LIN T, XU J, et al. DeepSpectra: an end-to-end deep learning approach for quantitative spectral analysis[J]. Anal Chim Acta, 2019, 1058:48-57. |
[30] | LIU Hui, MI Xiwei, LI Yanfei, et al. Smart wind speed deep learning based multi-step forecasting model using singular spectrum analysis, convolutional gated recurrent unit network and support vector regression[J]. Renewable Energy, 2019, 143:842-854. |
[31] | LIVIERIS I E, PINTELAS E, PINTELAS P. A CNN-LSTM model for gold price time-series forecasting[J]. Neural Computing and Applications, 2020, 32(23):17351-17360. |
[32] | BARRA S, CARTA S, CORRIGA A, et al. Deep learning and time series-to-image encoding for financial forecasting[J]. IEEE/CAA Journal of Automatics Sinica, 2020, 7(3):683-692. |
[33] | PAN Guangliang, WU Qihui, DING Guoru, et al. An autoformer-CSA approach for long-term spectrum prediction[J]. IEEE Wireless Communications Letters, 2023, 12(10):1647-1651. |
[34] | 龚循强, 汪宏宇, 鲁铁定, 等. 基于RLM-MC的高速铁路桥墩沉降曲线预测方法[J]. 铁道学报, 2022, 44(10):142-149. |
GONG Xunqiang, WANG Hongyu, LU Tieding, et al. A settlement curve prediction method of high-speed railway bridge pier based on RLM-MC[J]. Journal of the China Railway Society, 2022, 44(10):142-149. | |
[35] | 汪宏宇, 龚循强, 鲁铁定, 等. 基于马尔科夫链的曲线拟合法在尾矿坝沉降预测中的应用[J]. 东华理工大学学报(自然科学版), 2021, 44(4):364-369. |
WANG Hongyu, GONG Xunqiang, LU Tieding, et al. Application of curve fitting method based on Markov chain in tailings dam settlement prediction[J]. Journal of East China University of Technology (Natural Science), 2021, 44(4):364-369. |
[1] | 布金伟, 余科根, 汪秋兰, 李玲惠, 刘馨雨, 左小清, 常军. 融合星载GNSS-R数据和多变量参数全球海洋有效波高深度学习反演法[J]. 测绘学报, 2024, 53(7): 1321-1335. |
[2] | 江利明, 邵益, 周志伟, 马培峰, 王腾. 智能化InSAR数据处理研究进展、挑战与展望[J]. 测绘学报, 2024, 53(6): 1037-1056. |
[3] | 郭迟, 刘阳, 罗亚荣, 刘经南, 张全. 图像语义信息在视觉SLAM中的应用研究进展[J]. 测绘学报, 2024, 53(6): 1057-1076. |
[4] | 顾海燕, 杨懿, 李海涛, 孙立坚, 丁少鹏, 刘世琦. 高分辨率遥感影像样本库动态构建与智能解译应用[J]. 测绘学报, 2024, 53(6): 1165-1179. |
[5] | 丁少鹏, 卢秀山, 刘如飞, 杨懿, 顾海燕, 李海涛. 联合目标特征引导与多重注意力的建筑物变化检测[J]. 测绘学报, 2024, 53(6): 1224-1235. |
[6] | 刘志, 杨淑媛, 于子凡, 冯志玺, 高全伟, 王敏. 基于卷积神经网络的快速SAR自聚焦方法[J]. 测绘学报, 2024, 53(4): 610-619. |
[7] | 刘慧敏, 张陈为, 谌恺祺, 邓敏, 彭翀. 基于深度学习的城市PM2.5浓度时空分布预测及不确定性评估[J]. 测绘学报, 2024, 53(4): 750-760. |
[8] | 孙传猛, 魏宇, 李欣宇, 马铁华, 武志博. 复杂场景下无水尺水位的影像水位反演智能检测方法[J]. 测绘学报, 2024, 53(3): 558-568. |
[9] | 姜三, 刘凯, 李清泉, 江万寿. 融合深度特征的无人机影像SfM重建[J]. 测绘学报, 2024, 53(2): 321-331. |
[10] | 廖钊宏, 张依晨, 杨飚, 林明春, 孙文博, 高智. 基于Swin Transformer-CNN的单目遥感影像高程估计方法及其在公路建设场景中的应用[J]. 测绘学报, 2024, 53(2): 344-352. |
[11] | 林云浩, 王艳军, 李少春, 蔡恒藩. 一种耦合DeepLab与Transformer的农作物种植类型遥感精细分类方法[J]. 测绘学报, 2024, 53(2): 353-366. |
[12] | 孙一帆, 刘冰, 余旭初, 谭熊, 余岸竹. 图像级高光谱影像高分辨率特征网络分类方法[J]. 测绘学报, 2024, 53(1): 50-64. |
[13] | 任加新, 刘万增, 陈军, 张蓝, 陶远, 朱秀丽, 赵婷婷, 李然, 翟曦, 王海清, 周晓光, 侯东阳, 王勇. 知识引导的碎片化栅格地形图比例尺智能识别[J]. 测绘学报, 2024, 53(1): 146-157. |
[14] | 肖天元, 艾廷华, 余华飞, 杨敏, 刘鹏程. 地图综合图卷积神经网络点群简化方法[J]. 测绘学报, 2024, 53(1): 158-172. |
[15] | 江宝得, 黄威, 许少芬, 巫勇. 融合分散自适应注意力机制的多尺度遥感影像建筑物实例细化提取[J]. 测绘学报, 2023, 52(9): 1504-1514. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||