[1] |
刘海京, 夏才初, 朱合华, 等. 隧道病害研究现状与进展[J]. 地下空间与工程学报, 2007, 3(5):947-953.
|
|
LIU Haijing, XIA Caichu, ZHU Hehua, et al. Studies on tunnel damage[J]. Chinese Journal of Underground Space and Engineering, 2007, 3(5):947-953.
|
[2] |
吴江滨, 张顶立, 王梦恕. 铁路运营隧道病害现状及检测评估[J]. 中国安全科学学报, 2003, 13(6):49-52.
|
|
WU Jiangbin, ZHANG Dingli, WANG Mengshu. Current damage situation of railway operation tunnels and their inspection and evaluation[J]. China Safety Science Journal, 2003, 13(6):49-52.
|
[3] |
SHEN Yueqian, WANG Jinguo, WANG Jinhu, et al. Methodology for extraction of tunnel cross-sections using dense point cloud data[J]. Journal of Geodesy and Geoinformation Science, 2021, 4(2):56-71.
|
[4] |
王耀东, 朱力强, 余祖俊, 等. 基于样本自动标注的隧道裂缝病害智能识别[J]. 西南交通大学学报, 2023, 58(5):1001-1008.
|
|
WANG Yaodong, ZHU Liqiang, YU Zujun, et al. Intelligent tunnel crack recognition based on automatic sample labeling[J]. Journal of Southwest Jiaotong University, 2023, 58(5):1001-1008.
|
[5] |
张振海, 尹晓珍, 王阳萍, 等. 基于特征分析的图像式地铁隧道裂缝检测方法研究[J]. 铁道科学与工程学报, 2019, 16(11):2791-2800.
|
|
ZHANG Zhenhai, YIN Xiaozhen, WANG Yangping, et al. Research on image-based crack detection method for subway tunnel based on feature analysis[J]. Journal of Railway Science and Engineering, 2019, 16(11):2791-2800.
|
[6] |
王耀东, 余祖俊, 白彪, 等. 基于图像处理的地铁隧道裂缝识别算法研究[J]. 仪器仪表学报, 2014, 35(7):1489-1496.
|
|
WANG Yaodong, YU Zujun, BAI Biao, et al. Research on image processing based subway tunnel crack identification algorithm[J]. Chinese Journal of Scientific Instrument, 2014, 35(7):1489-1496.
|
[7] |
朱苦竹, 庄宁. 公路隧道衬砌裂缝成因分析及其治理[J]. 桂林工学院学报, 2009, 29(3):354-359.
|
|
ZHU Kuzhu, ZHUANG Ning. Analysis and solution to lining crack in one tunnel[J]. Journal of Guilin University of Technology, 2009, 29(3):354-359.
|
[8] |
何国华, 刘新根, 陈莹莹, 等. 基于数字图像的隧道表观病害识别方法研究[J]. 重庆交通大学学报(自然科学版), 2019, 38(3):21-26.
|
|
HE Guohua, LIU Xingen, CHEN Yingying, et al. Apparent tunnel diseases identification based on digital images[J]. Journal of Chongqing Jiaotong University (Natural Science), 2019, 38(3):21-26.
|
[9] |
王平让, 黄宏伟, 薛亚东. 基于图像局部网格特征的隧道衬砌裂缝自动识别[J]. 岩石力学与工程学报, 2012, 31(5):991-999.
|
|
WANG Pingrang, HUANG Hongwei, XUE Yadong. Automatic recognition of cracks in tunnel lining based on characteristics of local grids in images[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(5):991-999.
|
[10] |
雷斯达, 曹鸿猷, 康俊涛. 基于深度学习的复杂场景下混凝土表面裂缝识别研究[J]. 公路交通科技, 2020, 37(12):80-88.
|
|
LEI Sida, CAO Hongyou, KANG Juntao. Study on concrete surface crack recognition in complex scenario based on deep learning[J]. Journal of Highway and Transportation Research and Development, 2020, 37(12):80-88.
|
[11] |
李健超, 张翠兵, 柴雪松, 等. 基于图像识别技术的隧道衬砌裂缝检测系统研究[J]. 铁道建筑, 2018, 58(1):20-24.
|
|
LI Jianchao, ZHANG Cuibing, CHAI Xuesong, et al. Research on crack detection system of tunnel lining based on image recognition technology[J]. Railway Engineering, 2018, 58(1):20-24.
|
[12] |
周中, 张俊杰, 鲁四平. 基于改进YOLOv4的隧道衬砌裂缝检测算法[J]. 铁道学报, 2023, 45(10):162-170.
|
|
ZHOU Zhong, ZHANG Junjie, LU Siping. Tunnel lining crack detection algorithm based on improved YOLOv4[J]. Journal of the China Railway Society, 2023, 45(10):162-170.
|
[13] |
薛亚东, 李宜城. 基于深度学习的盾构隧道衬砌病害识别方法[J]. 湖南大学学报(自然科学版), 2018, 45(3):100-109.
|
|
XUE Yadong, LI Yicheng. A method of disease recognition for shield tunnel lining based on deep learning[J]. Journal of Hunan University (Natural Sciences), 2018, 45(3):100-109.
|
[14] |
吴刚, 罗炜, 王小龙, 等. 基于深度学习的盾构隧道衬砌表观病害检测模型研究[J]. 现代隧道技术, 2023, 60(4):67-75.
|
|
WU Gang, LUO Wei, WANG Xiaolong, et al. Study on a deep learning-based model for detecting apparent defects in shield tunnel lining[J]. Modern Tunnelling Technology, 2023, 60(4):67-75.
|
[15] |
WANG Hanxiang, LI Yanfen, DANG L M, et al. Pixel-level tunnel crack segmentation using a weakly supervised annotation approach[J]. Computers in Industry, 2021, 133:103545.
|
[16] |
ZHAO Shuai, ZHANG Dongming, XUE Yadong, et al. A deep learning-based approach for refined crack evaluation from shield tunnel lining images[J]. Automation in Construction, 2021, 132:103934.
|
[17] |
朱磊, 李东彪, 闫星志, 等. 基于改进Mask R-CNN深度学习算法的隧道裂缝智能检测方法[J]. 图学学报, 2023, 44(1):177-183.
|
|
ZHU Lei, LI Dongbiao, YAN Xingzhi, et al. Intelligent detection method of tunnel cracks based on improved Mask R-CNN deep learning algorithm[J]. Journal of Graphics, 2023, 44(1):177-183.
|
[18] |
HUANG Hongwei, ZHAO Shuai, ZHANG Dongming, et al. Deep learning-based instance segmentation of cracks from shield tunnel lining images[J]. Structure and Infrastructure Engineering, 2022, 18(2):183-196.
|
[19] |
LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proceedings of 2017 IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 2980-2988.
|
[20] |
MILLETARI F, NAVAB N, AHMADI S A. V-net: fully convolutional neural networks for volumetric medical image segmentation[C]//Proceedings of 2016 International Conference on 3D Vision. Stanford: IEEE, 2016: 565-571.
|
[21] |
拉维尚卡·奇特亚拉, 斯林德维·普迪佩迪. Python图像处理与采集[M]. 北京: 清华大学出版社, 2023: 22.
|
|
RAVISHANKA Chityala, SLINDEVI Pudipedi. Python image processing and acquisition[M]. Beijing: Tsinghua University Press, 2023: 22.
|
[22] |
耿楠. 数字图像处理[M]. 4版. 西安: 西安电子科技大学出版社, 2022: 272.
|
|
GENG Nan. Digital image processing[M]. 4th ed. Xi'an: Xidian University Press, 2022: 272.
|
[23] |
李淳罡. 第8章:形态学操作[EB/OL]. (2022-01-23)[2023-03-05]. https://blog.csdn.net/weixin_57440207/article/details/122647000?spm=1001.2014.3001.5502.
|
|
LI Chungang. Chapter 8: morphological operations[EB/OL]. (2022-01-23)[2023-03-05]. https://blog.csdn.net/weixin_57440207/article/details/122647000?spm=1001.2014.3001.5502.
|
[24] |
YUAN . 自动驾驶路径规划——A*算法[EB/OL]. [2023-03-05]. https://blog.csdn.net/sinat_52032317/article/details/127077625.
|
|
YUAN . Autonomous driving path planning--A* algorithm[EB/OL]. [2023-03-05]. https://blog.csdn.net/sinat_52032317/article/details/127077625.
|
[25] |
KANG D, BENIPAL S S, GOPAL D L, et al. Hybrid pixel-level concrete crack segmentation and quantification across complex backgrounds using deep learning[J]. Automation in Construction, 2020, 118:103291.
|