测绘学报 ›› 2025, Vol. 54 ›› Issue (9): 1664-1676.doi: 10.11947/j.AGCS.2025.20250092

• 摄影测量学与遥感 • 上一篇    下一篇

地表异常遥感探测轻量化大模型方法

闫凯1,2,3(), 徐健明1,2, 王桥1,2()   

  1. 1.北京师范大学卫星应用前沿交叉研究院,北京 100875
    2.北京师范大学地理科学学部,北京 100875
    3.遥感与数字地球全国重点实验室,北京 100875
  • 收稿日期:2025-03-02 修回日期:2025-09-15 出版日期:2025-10-10 发布日期:2025-10-10
  • 通讯作者: 王桥 E-mail:kaiyan@bnu.edu.cn;wangqiao@bnu.edu.cn
  • 作者简介:闫凯(1988—),男,博士,副教授,研究方向为即时遥感、定量遥感。E-mail:kaiyan@bnu.edu.cn
  • 基金资助:
    国家自然科学基金重大项目(42192580)

Earth surface anomaly detection based on lightweight large vision model features in remotely sensed imagery

Kai YAN1,2,3(), Jianming XU1,2, Qiao WANG1,2()   

  1. 1.Advanced Interdisciplinary Institute of Satellite Applications, Beijing Normal University, Beijing 100875, China
    2.Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
    3.State Key Laboratory of Remote Sensing and Digital Earth, Beijing 100875, China
  • Received:2025-03-02 Revised:2025-09-15 Online:2025-10-10 Published:2025-10-10
  • Contact: Qiao WANG E-mail:kaiyan@bnu.edu.cn;wangqiao@bnu.edu.cn
  • About author:YAN Kai (1988—), male, PhD, associate professor, majors in real-time remote sensing and quantitative remote sensing. E-mail: kaiyan@bnu.edu.cn
  • Supported by:
    The National Natural Science Foundation of China Major Program(42192580)

摘要:

在全球变化和城市化进程中,自然灾害、环境污染及非法开发等地表异常事件的影响范围与程度不断扩大,使得及时准确的地表异常探测成为国家需求和研究热点。遥感技术具有观测范围大且能周期性重访的优势,成为地表异常探测的关键手段。然而,现有地表异常探测方法多依赖地面大算力运算,涉及复杂的任务规划、卫星运控、星地传输和异常提取等环节,难以实现地表异常的快速识别。此外,已有方法通常面向特定异常类型,依赖专家知识和人工解译,难以用于通用化和智能化业务部署。为此,本文提出一种基于轻量化大模型特征的地表异常遥感自动探测方法,以提升地表异常探测的通用性、即时性和智能化部署能力。该方法包含3个环节:①采用视觉大模型作为特征提取器,以增强特征泛化性和算法通用性,通过高斯混合模型和贝叶斯信息准则实现自动化特征压缩,生成便于星地传输和在轨储存的轻量级先验知识;②利用高效字典查找法实现地表异常分值的快速推理,以适用于计算资源有限的星上环境;③在异常分值基础上,通过提示词和深度分割模型进行地表异常边界提取,提高提取的精细化和自动化程度。试验表明,与传统方法相比,本文方法表现更优且稳定,具有更好的通用性。试验案例中,先验知识库的平均压缩率约为100倍,大幅提升了在轨存储和星地传输更新的能力。同时,本文方法利用提示词和深度分割模型解决了固定阈值用于异常边界提取时自动化程度低、抗噪声能力差的问题,实现了精细化地表异常对象级提取。总体而言,本文方法具有数据存储量小、算力要求低、探测精度高等优势,具备成为通用化地表异常在轨即时探测业务化算法的潜力。

关键词: 地表异常探测, 即时遥感, 视觉大模型, 轻量化特征, 在轨运算

Abstract:

Earth surface anomaly detection (ESAD) has become increasingly vital due to intensifying global change and urbanization, leading to more frequent and severe disasters, pollution, and illegal development. Although remote sensing enables wide-range and periodic ESAD, efficiency remains a concern due to lengthy data transmission, dissemination, and processing procedures. Existing methods are primarily task-specific, relying on expert knowledge and human involvement, hindering generalized and automated deployment. In this context, we introduce a novel method aimed at inherently timely on-orbit detection. This approach is not only characterized by its generalizability and automation capabilities, but lightweight parameters that facilitate ground-satellite data transmission for updates. Our approach comprises three main processes: ①employing large vision models as feature extractors to enhance algorithm universality, with automatic feature compression achieved through Gaussian mixture models and Bayesian information criteria, generating lightweight prior knowledge suitable for ground-satellite transmission and on-orbit storage; ②utilizing an efficient dictionary lookup method for rapid inference of surface anomaly scores, making it applicable to satellite-based environments with limited computational resources; ③extracting surface anomaly boundaries based on anomaly scores using prompt words and deep segmentation models. This generates accurate anomaly boundaries with a threshold-insensitive method, reducing human involvement and promoting automation. Experiments demonstrate that the proposed method outperforms traditional approaches, offering better stability and generalization. In experimental cases, the average compression rate of the prior knowledge base was approximately 100 times, significantly improving the ability for on-orbit storage and ground-satellite data transmission updates. Furthermore, the method largely mitigates the issues of low automation and poor noise resistance associated with fixed thresholds for anomaly boundary extraction, achieving automated object-level surface anomaly extraction. Overall, the proposed ESAD method offers advantages such as small data storage, low computational requirements, and high detection accuracy. These features highlight its potential to become a generalized, on-orbit, real-time ESAD for operational deployment.

Key words: surface anomaly detection, real-time remote sensing, large vision model, lightweight features, on-orbit computation

中图分类号: