测绘学报 ›› 2025, Vol. 54 ›› Issue (10): 1826-1840.doi: 10.11947/j.AGCS.2025.20250139

• 大地测量学与导航 • 上一篇    下一篇

一种兼具精度与可解释性的Stacking-SHAP滑坡易发性预测集成方法

黄鑫1,2(), 叶健1(), 刘骋冰1, 曾秋雨1, 郭万新1,3, 郭志凯1   

  1. 1.西南交通大学地球科学与工程学院,四川 成都 611756
    2.自然资源部重庆测绘院,重庆 401120
    3.中国电建集团江西省电力设计院有限公司,江西 南昌 330096
  • 收稿日期:2025-03-31 修回日期:2025-06-19 出版日期:2025-11-14 发布日期:2025-11-14
  • 通讯作者: 叶健 E-mail:xinhuang@my.swjtu.edu.cn;yejian518@swjtu.edu.cn
  • 作者简介:黄鑫(2001—),男,硕士,研究方向为滑坡易发性建模与分析。E-mail:xinhuang@my.swjtu.edu.cn
  • 基金资助:
    国家自然科学基金(41771419)

A Stacking-SHAP ensemble method for landslide susceptibility prediction with high accuracy and interpretability

Xin HUANG1,2(), Jian YE1(), Chengbing LIU1, Qiuyu ZENG1, Wanxin GUO1,3, Zhikai GUO1   

  1. 1.Faculty of Geosciences and Engineering, Southwest Jiaotong University, Chengdu 611756, China
    2.Chongqing Institute of Surveying and Mapping, Ministry of Natural Resources, Chongqing 401120, China
    3.Powerchina Jiangxi Electric Power Engineering Co., Ltd., Nanchang 330096, China
  • Received:2025-03-31 Revised:2025-06-19 Online:2025-11-14 Published:2025-11-14
  • Contact: Jian YE E-mail:xinhuang@my.swjtu.edu.cn;yejian518@swjtu.edu.cn
  • About author:HUANG Xin (2001—), male, master, majors in landslide susceptibility modeling and analysis. E-mail: xinhuang@my.swjtu.edu.cn
  • Supported by:
    The National Natural Science Foundation of China(41771419)

摘要:

滑坡易发性预测及诱因分析对于制定科学有效的滑坡灾害防治策略至关重要。然而,当前仍缺乏能够兼具高预测精度与可解释性的滑坡预测模型。为此,本文提出了一种基于可解释性增强的集成学习方法,构建Stacking-SHAP模型,以提升滑坡易发性预测的准确性与诱因分析的可靠性。本文方法采用Stacking集成框架,融合XGBoost、Cat Boost、Light GBM、逻辑回归(LR)、随机森林(RF)等多种机器学习分类器,在保证预测精度的基础上,引入SHAP(shapley additive explanations)算法,以增强模型的可解释性。试验结果表明,Stacking-SHAP模型的AUC值达到0.920,显著优于单一分类器模型,如XGBoost(0.893)、CatBoost(0.894)、LightGBM(0.879)、RF(0.859)和LR(0.794)。更重要的是,相较于SHAP集成单一机器学习模型,Stacking-SHAP可解释增强集成模型在滑坡诱因分析方面表现出更优的综合性能,提高了滑坡致灾因素分析的可信度。整体而言,本文方法兼具高精度预测与高可靠性解释,为滑坡易发性预测与诱因分析提供了一种创新性方法,在滑坡防治与减灾领域具有重要的理论与应用价值。

关键词: 滑坡易发性, 地理大数据, Stacking算法, SHAP算法, 滑坡诱因分析

Abstract:

Landslide susceptibility prediction and triggering factor analysis are crucial for developing scientifically effective landslide disaster prevention and control strategies. However, there is still a lack of landslide prediction models that can achieve both high prediction accuracy and interpretability. To address this, the present study proposes an interpretable enhanced ensemble learning method by constructing the Stacking-SHAP model, aimed at improving the accuracy of landslide susceptibility prediction and the reliability of triggering factor analysis. This model employs a Stacking ensemble framework, integrating various machine learning classifiers, such as XGBoost, CatBoost, LightGBM, logistic regression (LR), and random forest (RF), while ensuring prediction accuracy. Additionally, the shapley additive explanations (SHAP) algorithm is incorporated to enhance model interpretability. Experimental results demonstrate that the AUC value of the Stacking-SHAP model reaches 0.920, significantly outperforming individual classifier models, such as XGBoost (0.893), CatBoost (0.894), LightGBM (0.879), RF (0.859), and LR (0.794). More importantly, compared to SHAP-integrated single machine learning models, the Stacking-SHAP interpretable enhanced ensemble model shows superior overall performance in landslide triggering factor analysis, thereby improving the credibility of landslide causative factor analysis. Overall, this model combines high-accuracy prediction with highly reliable interpretation, offering an innovative approach to landslide susceptibility prediction and triggering factor analysis, with significant theoretical and practical value in landslide prevention and disaster reduction.

Key words: landslide susceptibility, geographical big data, Stacking algorithm, SHAP algorithm, landslide triggering factor analysis

中图分类号: