测绘学报 ›› 2025, Vol. 54 ›› Issue (11): 1917-1933.doi: 10.11947/j.AGCS.2025.20250337

• 综述 •    

月球与近地行星三维形貌重建的智能方法综述:研究进展与未来挑战

童小华1,2(), 黄荣1,2(), 曹佳瑞1, 刘宸1, 王蓉1, 徐聿升1,2, 叶真1,2, 金雁敏1,2, 刘世杰1,2, 柳思聪1,2, 冯永玖1,2, 谢欢1,2   

  1. 1.同济大学测绘与地理信息学院,上海 200092
    2.上海市航天测绘遥感与空间探测重点实验室,上海 200092
  • 收稿日期:2025-09-11 修回日期:2025-11-10 发布日期:2025-12-15
  • 通讯作者: 黄荣 E-mail:xhtong@tongji.edu.cn;rong_huang@tongji.edu.cn
  • 作者简介:童小华(1971—),男,博士,教授,博士生导师,中国工程院院士,研究方向为航天测绘遥感与深空探测。E-mail:xhtong@tongji.edu.cn
  • 基金资助:
    国家自然科学基金(42221002)

Intelligent methods for 3D terrain reconstruction of the Moon and near-Earth planets: a review of current advances and future perspectives

Xiaohua TONG1,2(), Rong HUANG1,2(), Jiarui CAO1, Chen LIU1, Rong WANG1, Yusheng XU1,2, Zhen YE1,2, Yanmin JIN1,2, Shijie LIU1,2, Sicong LIU1,2, Yongjiu FENG1,2, Huan XIE1,2   

  1. 1.College of Surveying and Geo-informatics, Tongji University, Shanghai 200092, China
    2.Shanghai Key Laboratory for Planetary Mapping and Remote Sensing for Deep Space Exploration, Shanghai 200092, China
  • Received:2025-09-11 Revised:2025-11-10 Published:2025-12-15
  • Contact: Rong HUANG E-mail:xhtong@tongji.edu.cn;rong_huang@tongji.edu.cn
  • About author:TONG Xiaohua (1971—), male, PhD, professor, PhD supervisor, academician of Chinese Academy of Engineering, majors in space mapping and remote sensing for planetary exploration. E-mail: xhtong@tongji.edu.cn
  • Supported by:
    The National Natural Science Foundation of China(42221002)

摘要:

地外天体的三维形貌重建是深空探测任务中的核心环节之一,为着陆区选址、巡视规划、资源勘查等提供关键的三维空间信息支撑。现有方法如摄影测量法、影像光度法与激光测高插值法等,已广泛应用于月球、火星、小行星等地外天体的三维形貌重建,在高精度地形模型构建、关键区域地貌解析及资源勘查等方面取得了显著成果。但是受制于影像获取条件受限、控制基准缺失以及地形与光照环境复杂等因素,常面临数据质量差、匹配困难、观测缺失与自动化不足等问题。近年来,卷积神经网络、生成对抗网络、注意力机制模型(Transformer)和神经辐射场等人工智能方法在地外天体的三维重建工作中被逐渐关注。本文系统回顾了人工智能方法在地外天体三维形貌重建任务中应用的3种主要技术途径,即用于影像的特征提取与匹配、用于单视影像的深度估计,以及用于多视影像的辐射场建模。本文还对各类方法的核心机制、典型应用案例、适用场景和性能特点进行了对比分析,并总结了当前存在的技术挑战,展望了未来在多源融合、自/弱监督学习、大模型及实时处理等方面的研究趋势,以期推动人工智能方法在地外天体三维形貌重建领域的进一步应用与发展。

关键词: 人工智能, 地外天体, 深空探测, 地形地貌, 三维重建

Abstract:

3D terrain reconstruction of extraterrestrial bodies is a core element of deep space exploration, providing essential spatial information for landing site selection, rover navigation, and resource exploration. Traditional techniques—such as photogrammetry, photoclinometry, and laser altimetry interpolation—have been extensively applied to the Moon, Mars, and asteroids, achieving significant progress in building high-precision terrain models, interpreting geomorphological features, and supporting resource prospecting. However, these methods remain constrained by limited imaging conditions, the absence of reliable control references, and the complexity of terrain and illumination, often resulting in issues such as low data quality, difficult feature matching, missing observations, and limited automation. In recent years, artificial intelligence (AI) techniques—including convolutional neural networks (CNNs), generative adversarial networks (GANs), attention-based models (Transformers), and neural radiance fields (NeRF)—have shown growing potential in extraterrestrial 3D reconstruction. This review synthesizes three major AI-driven approaches: ①Feature extraction and image matching. ②Depth estimation from single-view images. ③Radiance field modeling from multi-view observations. We further compare their underlying mechanisms, representative applications, applicable scenarios, and performance characteristics. Finally, we outline key technical challenges and discuss future directions in multi-source data fusion, self- and weakly supervised learning, foundation models, and real-time processing, aiming to foster broader applications of AI in extraterrestrial 3D terrain reconstruction.

Key words: artificial intelligence, extraterrestrial bodies, deep space exploration, terrain and geomorphology, 3D reconstruction

中图分类号: