Acta Geodaetica et Cartographica Sinica ›› 2015, Vol. 44 ›› Issue (9): 1003-1013.doi: 10.11947/j.AGCS.2015.20140388
Previous Articles Next Articles
WANG Junshu1,2, JIANG Nan1,2, ZHANG Guoming3, LI Yang1,2, LV Heng1,2
Received:
2014-07-21
Revised:
2015-06-08
Online:
2015-09-24
Published:
2015-09-24
Contact:
江南,njiang@njnu.edu.cn
E-mail:njiang@njnu.edu.cn
Supported by:
CLC Number:
WANG Junshu, JIANG Nan, ZHANG Guoming, LI Yang, LV Heng. Incremental Classification Algorithm of Hyperspectral Remote Sensing Images Based on Spectral-spatial Information[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(9): 1003-1013.
"[1] KUO B C, LANDGREBE D A. A Robust Classification Procedure Based on Mixture Classifiers and Nonparametric Weighted Feature Extraction[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(11): 2486-2494. [2] LEE C, LANDGREBE D A. Feature Extraction Based on Decision Boundaries[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1993, 15(4): 388-400. [3] LIU Chunhong, ZHAO Chunhui, ZHANG Lingyan. A New Method of Hyperspectral Remote Sensing Image Dimensional Reduction[J]. Journal of Image and Graphics, 2005, 10(2): 218-222. (刘春红, 赵春晖, 张凌雁. 一种新的高光谱遥感图像降维方法[J]. 中国图象图形学报, 2005, 10(2): 218-222.) [4] LUO Jiancheng, ZHOU Chenghu, LIANG Yi, et al. Support Vector Machine for Spatial Feature Extraction and Classification of Remotely Sensed Imagery[J]. Journal of Remote Sensing, 2002, 6(1): 50-55. (骆剑承, 周成虎, 梁怡, 等. 支撑向量机及其遥感影像空间特征提取和分类的应用研究[J]. 遥感学报, 2002, 6(1): 50-55.) [5] WANG Junshu, JIANG Nan, ZHANG Guoming, et al. Semi-supervised Classification Algorithm for Hyperspectral Remote Sensing Image Based on DE-self-training[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(5): 239-244. (王俊淑, 江南, 张国明, 等. 高光谱遥感图像DE-self-training半监督分类算法[J]. 农业机械学报, 2015, 46(5): 239-244.) [6] ZHOU Zhihua, ZHAN Dechuan, YANG Qiang. Semi-supervised Learning with Very Few Labeled Training Examples[C]//Proceedings of the National Conference on Artificial Intelligence. Cambridge, MA London: [s.n.], 2007, 22(1): 675-680. [7] CHAWLA N V, KARAKOULAS G. Learning from Labeled and Unlabeled Data: An Empirical Study across Techniques and Domains[J]. Journal of Artificial Intelligence Research, 2005, 23(1): 331-366. [8] LI Yuanqing, GUAN Cuntai, LI Huiqi, et al. A Self-training Semi-supervised SVM Algorithm and Its Application in an EEG-based Brain Computer Interface Speller System[J]. Pattern Recognition Letters, 2008, 29(9): 1285-1294. [9] TAN Kun, DU Peijun. Wavelet Support Vector Machines Based on Reproducing Kernel Hilbert Space for Hyperspectral Remote Sensing Image Classification[J]. Acta Geodaetica et Cartographica Sinica, 2011, 40(2): 142-147. (谭琨, 杜培军. 基于再生核Hilbert空间的小波核函数支持向量机的高光谱遥感影像分类[J]. 测绘学报, 2011, 40(2): 142-147.) [10] MELGANI F, BRUZZONE L. Classifcation of Hyperspectral Remote Sensing Images with Support Vector Machines[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(8): 1778-1790. [11] MANTHIRA MOORTHI S, MISRA I, KAUR R, et al. Kernel Based Learning Approach for Satellite Image Classification Using Support Vector Machine[C]//IEEE Recent Advances in Intelligent Computational Systems (RAICS). Trivandrum: IEEE, 2011: 107-110. [12] DELL'ACQUA F, GAMBA P, FERRARI A, et al. Exploiting Spectral and Spatial Information in Hyperspectral Urban Data with High Resolution[J]. IEEE Geoscience and Remote Sensing Letters, 2004, 1(4): 322-326. [13] LIANG Liang, YANG Minhua, LI Yingfang. Hyperspectral Remote Sensing Image Classification Based on ICA and SVM Algorithm[J]. Spectroscopy and Spectral Analysis, 2010, 30(10): 2724-2728. (梁亮, 杨敏华, 李英芳. 基于ICA与SVM算法的高光谱遥感影像分类[J]. 光谱学与光谱分析, 2010, 30(10): 2724-2728.) [14] WU Jian. PENG Daoli. Vegetation Classification Technology of Hyperspectral Remote Sensing Based on Spatial Information[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(5): 150-153. (吴见, 彭道黎. 基于空间信息的高光谱遥感植被分类技术[J]. 农业工程学报, 2012, 28(5): 150-153.) [15] GAO Hengzhen, WAN Jianwei, WANG Libao, et al. Research on Classification Technique for Hyperspectral Imagery Based on Spectral-spatial Composite Kernels[J]. Signal Processing, 2011, 27(5): 648-652. (高恒振, 万建伟, 王力宝, 等. 基于谱域-空域组合核函数的高光谱图像分类技术研究[J]. 信号处理, 2011, 27(5): 648-652.) [16] CHEN Shanjing, HU Yihua, SHI Liang, et al. Classification of Hyperspectral Imagery Based on Ant Colony Compositely Optimizing SVM in Spatial and Spectral Features[J]. Spectroscopy and Spectral Analysis, 2013, 33(8): 2192-2197. (陈善静, 胡以华, 石亮, 等. 空-谱二维蚁群组合优化SVM 的高光谱图像分类[J]. 光谱学与光谱分析, 2013, 33(8): 2192-2197.) [17] POGGI G, SCARPA G, ZERUBIA J B. Supervised Segmentation of Remote Sensing Images Based on a Tree-structure MRF Model[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(8): 1901-1911. [18] JACKSON Q, LANDGREBE D A. Adaptive Bayesian Contextual Classification Based on Markov Random Fields[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(11): 2454-2463. [19] FAUVEL M, BENEDIKTSSON J A, CHANUSSOT J, et al. Spectral and Spatial Classification of Hyperspectral Data Using SVMs and Morphological Profiles[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(11): 3804-3814. [20] CRESPO J, SERRA J, SCHAFER R W. Theoretical Aspects of Morphological Filters by Reconstruction[J], Signal Processing, 1995, 47(2): 201-225. [21] FAUVEL M, TARABALKA Y, BENEDIKTSSON J A, et al. Advances in Spectral-spatial Classification of Hyperspectral Images[J]. Proceedings of the IEEE, 2013, 101(3): 652-675. [22] CHANG C C, LIN C J. LIBSVM: A Library for Support Vector Machines[J]. ACM Transactions on Intelligent Systems and Technology (TIST), 2011, 2(3): 27." [1] KUO B C, LANDGREBE D A. A Robust Classification Procedure Based on Mixture Classifiers and Nonparametric Weighted Feature Extraction[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(11): 2486-2494. [2] LEE C, LANDGREBE D A. Feature Extraction Based on Decision Boundaries[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1993, 15(4): 388-400. [3] LIU Chunhong, ZHAO Chunhui, ZHANG Lingyan. A New Method of Hyperspectral Remote Sensing Image Dimensional Reduction[J]. Journal of Image and Graphics, 2005, 10(2): 218-222. (刘春红, 赵春晖, 张凌雁. 一种新的高光谱遥感图像降维方法[J]. 中国图象图形学报, 2005, 10(2): 218-222.) [4] LUO Jiancheng, ZHOU Chenghu, LIANG Yi, et al. Support Vector Machine for Spatial Feature Extraction and Classification of Remotely Sensed Imagery[J]. Journal of Remote Sensing, 2002, 6(1): 50-55. (骆剑承, 周成虎, 梁怡, 等. 支撑向量机及其遥感影像空间特征提取和分类的应用研究[J]. 遥感学报, 2002, 6(1): 50-55.) [5] WANG Junshu, JIANG Nan, ZHANG Guoming, et al. Semi-supervised Classification Algorithm for Hyperspectral Remote Sensing Image Based on DE-self-training[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(5): 239-244. (王俊淑, 江南, 张国明, 等. 高光谱遥感图像DE-self-training半监督分类算法[J]. 农业机械学报, 2015, 46(5): 239-244.) [6] ZHOU Zhihua, ZHAN Dechuan, YANG Qiang. Semi-supervised Learning with Very Few Labeled Training Examples[C]//Proceedings of the National Conference on Artificial Intelligence. Cambridge, MA London: [s.n.], 2007, 22(1): 675-680. [7] CHAWLA N V, KARAKOULAS G. Learning from Labeled and Unlabeled Data: An Empirical Study across Techniques and Domains[J]. Journal of Artificial Intelligence Research, 2005, 23(1): 331-366. [8] LI Yuanqing, GUAN Cuntai, LI Huiqi, et al. A Self-training Semi-supervised SVM Algorithm and Its Application in an EEG-based Brain Computer Interface Speller System[J]. Pattern Recognition Letters, 2008, 29(9): 1285-1294. [9] TAN Kun, DU Peijun. Wavelet Support Vector Machines Based on Reproducing Kernel Hilbert Space for Hyperspectral Remote Sensing Image Classification[J]. Acta Geodaetica et Cartographica Sinica, 2011, 40(2): 142-147. (谭琨, 杜培军. 基于再生核Hilbert空间的小波核函数支持向量机的高光谱遥感影像分类[J]. 测绘学报, 2011, 40(2): 142-147.) [10] MELGANI F, BRUZZONE L. Classifcation of Hyperspectral Remote Sensing Images with Support Vector Machines[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(8): 1778-1790. [11] MANTHIRA MOORTHI S, MISRA I, KAUR R, et al. Kernel Based Learning Approach for Satellite Image Classification Using Support Vector Machine[C]//IEEE Recent Advances in Intelligent Computational Systems (RAICS). Trivandrum: IEEE, 2011: 107-110. [12] DELL'ACQUA F, GAMBA P, FERRARI A, et al. Exploiting Spectral and Spatial Information in Hyperspectral Urban Data with High Resolution[J]. IEEE Geoscience and Remote Sensing Letters, 2004, 1(4): 322-326. [13] LIANG Liang, YANG Minhua, LI Yingfang. Hyperspectral Remote Sensing Image Classification Based on ICA and SVM Algorithm[J]. Spectroscopy and Spectral Analysis, 2010, 30(10): 2724-2728. (梁亮, 杨敏华, 李英芳. 基于ICA与SVM算法的高光谱遥感影像分类[J]. 光谱学与光谱分析, 2010, 30(10): 2724-2728.) [14] WU Jian. PENG Daoli. Vegetation Classification Technology of Hyperspectral Remote Sensing Based on Spatial Information[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(5): 150-153. (吴见, 彭道黎. 基于空间信息的高光谱遥感植被分类技术[J]. 农业工程学报, 2012, 28(5): 150-153.) [15] GAO Hengzhen, WAN Jianwei, WANG Libao, et al. Research on Classification Technique for Hyperspectral Imagery Based on Spectral-spatial Composite Kernels[J]. Signal Processing, 2011, 27(5): 648-652. (高恒振, 万建伟, 王力宝, 等. 基于谱域-空域组合核函数的高光谱图像分类技术研究[J]. 信号处理, 2011, 27(5): 648-652.) [16] CHEN Shanjing, HU Yihua, SHI Liang, et al. Classification of Hyperspectral Imagery Based on Ant Colony Compositely Optimizing SVM in Spatial and Spectral Features[J]. Spectroscopy and Spectral Analysis, 2013, 33(8): 2192-2197. (陈善静, 胡以华, 石亮, 等. 空-谱二维蚁群组合优化SVM 的高光谱图像分类[J]. 光谱学与光谱分析, 2013, 33(8): 2192-2197.) [17] POGGI G, SCARPA G, ZERUBIA J B. Supervised Segmentation of Remote Sensing Images Based on a Tree-structure MRF Model[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(8): 1901-1911. [18] JACKSON Q, LANDGREBE D A. Adaptive Bayesian Contextual Classification Based on Markov Random Fields[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(11): 2454-2463. [19] FAUVEL M, BENEDIKTSSON J A, CHANUSSOT J, et al. Spectral and Spatial Classification of Hyperspectral Data Using SVMs and Morphological Profiles[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(11): 3804-3814. [20] CRESPO J, SERRA J, SCHAFER R W. Theoretical Aspects of Morphological Filters by Reconstruction[J], Signal Processing, 1995, 47(2): 201-225. [21] FAUVEL M, TARABALKA Y, BENEDIKTSSON J A, et al. Advances in Spectral-spatial Classification of Hyperspectral Images[J]. Proceedings of the IEEE, 2013, 101(3): 652-675. [22] CHANG C C, LIN C J. LIBSVM: A Library for Support Vector Machines[J]. ACM Transactions on Intelligent Systems and Technology (TIST), 2011, 2(3): 27. |
[1] | YANG Bisheng, CHEN Chi, DONG Zhen. 3D geospatial information extraction of urban objects for smart surveying and mapping [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1476-1484. |
[2] | CHENG Jiehai, HUANG Zhongyi, WANG Jianru, HE Shi. The automatic determination method of the optimal segmentation result of high-spatial resolution remote sensing image [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(5): 658-667. |
[3] | LI Deren, XU Xiaodi, SHAO Zhenfeng. On geospatial information science in the era of IoE [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(1): 1-8. |
[4] | WEI Lifei, YU Ming, ZHONG Yanfei, YUAN Ziran, HUANG Can. Hyperspectral image classification method based on space-spectral fusion conditional random field [J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(3): 343-354. |
[5] | XU Jun, WANG Cailing, WANG Li. An improved endmember extraction method of mathematical morphology based on PPI algorithm [J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(8): 996-1003. |
[6] | HUANG Hong, SHI Guangyao, DUAN Yule, ZHANG Limei. Dimensionality reduction method for hyperspectral images based on weighted spatial-spectral combined preserving embedding [J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(8): 1014-1024. |
[7] | CHEN Jun, PENG Shu, ZHAO Xuesheng, GE Yuejing, LI Zhilin. Measuring regional progress towards SDGs by combining geospatial and statistical information [J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(4): 473-479. |
[8] | LI Deren. Towards geospatial information technology in 5G/6G era [J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(12): 1475-1481. |
[9] | ZHANG Xu, HAO Xiangyang, LI Jiansheng, LI Pengyue. Fusion and visualization method of dynamic targets in surveillance video with geospatial information [J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(11): 1415-1423. |
[10] | YAN Lei, CHEN Rui, SUN Yanbiao. A Preliminary Study on the Theory of Polar Coordinates Digital Photogrammetry and the Coordinate System of Spatial Information [J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(6): 705-721. |
[11] | HE Manyun, CHENG Yinglei, QIU Langbo, ZHAO Zhongyang. An Algorithm of Building Extraction in Urban Area Based on Improved Top-hat Transformations and LBP Elevation Texture [J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(9): 1116-1122. |
[12] | LIN Xiangguo, ZHANG Jixian. Object-based Morphological Building Index for Building Extraction from High Resolution Remote Sensing Imagery [J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(6): 724-733. |
[13] | HUANG Bo, ZHAO Yongquan. Research Status and Prospect of Spatiotemporal Fusion of Multi-source Satellite Remote Sensing Imagery [J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10): 1492-1499. |
[14] | TANG Guoan, NA Jiaming, CHENG Weiming. Progress of Digital Terrain Analysis on Regional Geomorphology in China [J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10): 1570-1591. |
[15] | ZHU Qing, FU Xiao. The Review of Visual Analysis Methods of Multi-modal Spatio-temporal Big Data [J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10): 1672-1677. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||