[1] MICUSIK B, KOSECKA J. Piecewise Planar City 3D Modeling from Street View Panoramic Sequences[C]//IEEE Conference on Computer Vision and Pattern Recognition. Miami, FL: IEEE, 2009: 2906-2912. [2] TORII A, HAVLENA M, PAJDLA T. From Google Street View to 3D City Models[C]//IEEE 12th International Conference on Computer Vision Workshops. Kyoto: IEEE, 2009: 2188-2195. [3] SATO T, YOKOYA N. Multi-baseline Stereo by Maximizing Total Number of Interest Points[C]//Annual Conference SICE. Takamatsu: IEEE, 2007: 1471-1477. [4] MATSUHISA R, ONO S, KAWASAKI H, et al. Image-based Ego-motion Estimation Using On-vehicle Omnidirectional Camera[J]. International Journal of Intelligent Transportation Systems Research, 2010, 8(2): 106-117. [5] SATO T, PAJDLA T, YOKOYA N. Epipolar Geometry Estimation for Wide-baseline Omnidirectional Street View Images[C]//IEEE International Conference on Computer Vision Workshops. Barcelona: IEEE, 2011: 56-63. [6] JI Shunping, SHI Yun. Image Matching and Bundle Adjustment Using Vehicle-based Panoramic Camera[J]. Acta Geodaetica et Cartographica Sinica, 2013, 42(1): 94-100. (季顺平, 史云. 车载全景相机的影像匹配和光束法平差[J]. 测绘学报, 2013, 42(1): 94-100.) [7] ZHANG Zhengpeng, JIANG Wanshou, ZHANG Jing. A Gross Error Detection Method of Vehicle-borne Cubic Panoramic Image Sequence[J]. Geomatics and Information Science of Wuhan University, 2014, 39(10): 1208-1213. (张正鹏, 江万寿, 张靖. 车载立方体全景影像匹配点的粗差检测方法[J]. 武汉大学学报: 信息科学版, 2014, 39(10): 1208-1213.) [8] ZHANG Zhengpeng, JIANG Wanshou, ZHANG Jing. An Image Match Method Based on Optical Flow Feature Clustering for Vehicle-borne Panoramic Image Sequence[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(12): 1266-1273. (张正鹏, 江万寿, 张靖. 光流特征聚类的车载全景序列影像匹配方法[J]. 测绘学报, 2014, 43(12): 1266-1273.) [9] DEVROYE L, LUGOSI G. Variable Kernel Estimates: on the Impossibility of Tuning the Parameters[C]//GINÉ E, MASON D M, WELLNER J A. High Dimensional Probability II. Birkhäuser Boston: Springer, 2000: 405-424. [10] BERLINET A, BIAU G, ROUVIèRE L. Optimal L1 Bandwidth Selection for Variable Kernel Density Estimates[J]. Statistics & Probability Letters, 2005, 74(2): 116-128. [11] TURLACH B A. Bandwidth Selection in Kernel Density Estimation: A Review[M]. [S.l.]: Université Catholique De Louvain, 1993. [12] ZHOU Fangfang, FAN Xiaoping, YE Zhen. Mean Shift Research and Applications[J]. Control and Decision, 2007, 22(8): 841-847. (周芳芳, 樊晓平, 叶榛. 均值漂移算法的研究与应用[J]. 控制与决策, 2007, 22(8): 841-847.) [13] ZHOU Jiaxiang, ZHU Jianjun, MEI Xiaoming, et al. An Adaptive Mean Shift Segmentation Method of Remote Sensing Images Based on Multi-dimension Features[J]. Geomatics and Information Science of Wuhan University, 2012, 37(4): 419-422, 440. (周家香, 朱建军, 梅小明, 等. 多维特征自适应MeanShift遥感图像分割方法[J]. 武汉大学学报: 信息科学版, 2012, 37(4): 419-422, 440.) [14] COMANICIU D. An Algorithm for Data-driven Bandwidth Selection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(2): 281-288. [15] COMANICIU D, RAMESH V, MEER P. The Variable Bandwidth Mean Shift and Data-driven Scale Selection[C]//8th IEEE International Conference on Computer Vision. Vancouver, BC: IEEE, 2001: 438-445. [16] GILANI S Z A, RAO N I. Data Driven Bandwidth for Medoid Shift Algorithm[C]//MURGANTE B, GERVASI O, IGLESIAS A, et al. Computational Science and Its Applications. Berlin: Springer, 2011: 534-546. [17] MAYER A, GREENSPAN H. An Adaptive Mean-shift Framework for MRI Brain Segmentation[J]. IEEE Transactions on Medical Imaging, 2009, 28(8): 1238-1250. [18] COLLINS R T. Mean-shift Blob Tracking through Scale Space[C]//DANIELLE M. IEEE Computer Society Conference on Computer Vision and Pattern Recognition: Vol 2. Baltimore: Victor Graphics, 2003: 234-240. [19] COMANICIU D, RAMESH V, MEER P. Kernel-based Object Tracking[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(5): 564-575. [20] WANG Jue, THIESSON B, XU Yingqing, et al. Image and Video Segmentation by Anisotropic Kernel Mean Shift[C]//PAJDLA T, MATAS J. Proceedings of the 8th European Conference on Computer Vision. Berlin: Springer, 2004: 238-249. [21] LOWE D G. Distinctive Image Features from Scale-invariant Keypoints[J]. International Journal of Computer Vision, 2004, 60(2): 91-110. [22] SUN Deqing, ROTH S, BLACK M J. Secrets of Optical Flow Estimation and Their Principles[C]//IEEE Conference on Computer Vision and Pattern Recognition. San Francisco, CA: IEEE, 2010: 2432-2439. |