[1] ESA. Gravity Field and Steady-state Ocean Circulation Mission. Reports for Mission Selection of the Four Candidate Earth Explorer Core Missions[R]. ESA Publications Division, ES SP-1233(1), 1999. [2] DRINKWATER M R, HAAGMANS R, MUZI D, et al. The GOCE Gravity Mission: ESA's First Core Earth Explorer[R]. Proceedings of the 3rd International GOCE User Workshop, Frascati, Italy, ESA Special Publication, SP-627, ISBN 92-9092-938-3, 2006: 1-8. [3] RUMMEL R, VAN GELDEREN M, KOOP R, et al. Spherical Harmonic Analysis of Satellite Gradiometry[M]. Netherlands Geodetic Commission: Publications on Geodesy, New Series 39, 1993. [4] KOOP R. Global Gravity Field Modeling Using Satellite Gravity Gradiometry[M]. Netherlands Geodetic Commission: Publications on Geodesy, New Series 38, 1993. [5] PAIL R, BRUINSMA S, MIGLIACCIO F, et al. First GOCE Gravity Field Models Derived by Three Different Approaches[J]. Journal of Geodesy, 2011, 85(11): 819-843. [6] SNEEUW N J. A Semi-analytical Approach to Gravity Field Analysis from Satellite Observations[D]. Munich, Germany: Institut für Astronomische und Physikalische Geodsie, Technische Universitt München, 2000. [7] SNEEUW N J. Space-wise, Time-wise, Torus and Rosborough Representations in Gravity Field Modeling[J]. Space Science Reviews, 2003, 108(1-2): 37-46. [8] KLEES R, DITMAR P. The Performance of the Time-wise Semi-analytical Inversion of Satellite Gravity Gradients[M]//DM J, SCHWARZ K P. Vistas for Geodesy in the New Millennium, International Association of Geodesy Symposia. Berlin Heidelberg: Springer, 2001, 125: 253-258. [9] SCHUH W D, PAIL R, PLANK G. Assessment of Different Numerical Solution Strategies for Gravity Field Recovery[C]// Proceedings of the 1st International GOCE User Workshop, ESA WPP-188, 87-95, ESA/ESTEC, 2001. [10] PAIL R, WERMUTH M. GOCE SGG and SST Quick-look Gravity Field Analysis[J]. Advances in Geosciences, 2003, 1: 5-9. [11] PAIL R, PLANK G. GOCE Gravity Field Processing Strategy[J]. Studia Geophysica et Geodaetica, 2004, 48(2): 289-309. [12] XU Chen. The Torus-based Semi-analytical Approach in Spaceborne Gravimetry[D]. Calgary: Department of Geomatics Engineering, University of Calgary, 2008. [13] KAULA W M. Theory of Satellite Geodesy: Applications of Satellites to Geodesy[M]. Waltham Massachusetts: Blaisdell Publishing Company, 1966. [14] SCHRAMA E J O. The Role of Orbit Errors in Processing of Satellite Altimeter Data[M]. Netherlands Geodetic Commission: Publications on Geodesy, New Series 33, 1989. [15] PAIL R, PLANK G. Assessment of Three Numerical Solution Strategies for Gravity Field Recovery from GOCE Satellite Gravity Gradiometry Implemented on a Parallel Platform[J]. Journal of Geodesy, 2002, 76(8): 462-474. [16] ESA. GOCE HPF: GOCE Level 2 Product Data Handbook[R]. Technical Note, GO-MA-HPF-GS-0110, 2010. [17] CAPITAINE N, WALLACE P T, MCCARTHY D D. Expressions to Implement the IAU 2000 Definition of UT1[J]. Astronomy & Astrophysics, 2003, 406(3): 1135-1149. [18] PAVLIS N K, HOLMES S A, KENYON S C, et al. An Earth Gravitational Model to Degree 2160: EGM2008[J]. EGU General Assembly, 2008, 10: 13-18. [19] ESA. GOCE L1b Products User Handbook[R]. Technical Note, GOCE-GSEG-EOPGTN-06-0137, 2006. [20] SNEEUW N J, VAN GELDEREN M. The Polar Gap[M]//SANSÓ F, RUMMEL R. Geodetic Boundary Value Problems in View of the One Centimeter Geoid. Lecture Notes in Earth Sciences. Berlin Heidelberg: Springer, 1997, 65: 559-568. [21] XU Xinyu, LI Jiancheng, JIANG Weiping, et al. Simulation Study for Recovering GOCE Satellite Gravity Model Based on Space-wise LS Method[J]. Acta Geodaetica et Cartographica Sinica, 2011, 40(6): 697-702. (徐新禹, 李建成, 姜卫平, 等. 基于空域最小二乘法求解 GOCE 卫星重力场的模拟研究[J]. 测绘学报, 2011, 40(6): 697-702.) [22] RUDOLPH S, KUSCHE J, IIK K H. Investigations on the Polar Gap Problem in ESA's Gravity Field and Steady-state Ocean Circulation Explorer Mission (GOCE)[J]. Journal of Geodynamics, 2002, 33(1-2): 65-74. [23] XU Xinyu, LI Jiancheng, WANG Zhengtao, et al. The Simulation Research on the Tikhonov Regularization Applied in Gravity Field Determination of GOCE Satellite Mission[J]. Acta Geodaetica et Cartographica Sinica, 2010, 39(5): 465-470. (徐新禹, 李建成, 王正涛, 等. Tikhonov正则化方法在GOCE重力场求解中的模拟研究[J]. 测绘学报, 2010, 39(5): 465-470.) [24] ZHU Guangbin, LI Jiancheng, WEN Hanjiang, et al. Slepian Localized Spectral Analysis of the Determination of the Earth's Gravity Field Using Satellite Gravity Gradiometry Data[J]. Acta Geodaetica et Cartographica Sinica, 2012, 41(1): 1-7. (朱广彬, 李建成, 文汉江, 等. 卫星重力梯度数据确定地球重力场的Slepian局部谱分析方法[J]. 测绘学报, 2012, 41(1): 1-7.) [25] BAUR O, SNEEUW N, GRAFAREND E W. Methodology and Use of Tensor Invariants for Satellite Gravity Gradiometry[J]. Journal of Geodesy, 2008, 82(4-5): 279-293. |