[1] 李德仁, 王树良, 李德毅. 空间数据挖掘理论及应用[M]. 2版. 北京:科学出版社, 2013. LI Deren, WANG Shuliang, LI Deyi. Spatial Data Mining Theories and Applications[M]. 2nd ed. Beijing:Science Press, 2013. [2] 刘大有, 陈慧灵, 齐红, 等. 时空数据挖掘研究进展[J]. 计算机研究与发展, 2013, 50(2):225-239. LIU Dayou, CHEN Huiling, QI Hong, et al. Advance in Spatiaotemporal Data Mining[J]. Journal of Computer Research and Development, 2013, 50(2):225-239. [3] HAWKINS D. Identification of Outliers[M]. London:Chapman and Hall, 1980. [4] SHEKHAR S, LU C T, ZHANG Pusheng. A Unified Approach to Detecting Spatial Outliers[J]. GeoInformatica, 2003, 7(2):139-166. [5] KNORR E M, Ng R T. Algorithms for Mining Distance-Based Outliers in Large Datasets[C]//Proceedings of the 24th International Conference on Very Large Data Bases, New York:VLDB Press, 1998:392-403. [6] BREUNIG M M, KRIEGEL H P, Ng R T, et al. LOF:Identifying Density-Based Local Outliers[C]//Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data. Dallas:ACM, 2000:93-104. [7] 刘启亮, 邓敏, 石岩, 等. 一种基于多约束的空间聚类方法[J]. 测绘学报, 2011, 40(4):509-516. LIU Qiliang, DENG Min, SHI Yan, et al. A Novel Spatial Clustering Method Based on Multi-constraints[J]. Acta Geodaetica et Cartographica Sinica, 2011, 40(4):509-516. [8] SHI Yan, DENG Min, YANG Xuexi, et al. Adaptive Detection of Spatial Point Event Outliers Using Multilevel Constrained Delaunay Triangulation[J]. Computers, Environment and Urban Systems, 2016, 59:164-183. [9] 杨学习, 石岩, 邓敏, 等. 一种基于多层次专题属性约束的空间异常探测方法[J]. 武汉大学学报(信息科学版), 2016, 41(6):810-817. YANG Xuexi, SHI Yan, DENG Min, et al. A New Method of Spatial Outlier Detection by Considering Multi-level Thematic Attribute Constraints[J]. Geomatics and Information Science of Wuhan University, 2016, 41(6):810-817. [10] LU C T, DOS SANTOS JR R F, LIU Xutong, et al. A Graph-based Approach to Detect Abnormal Spatial Points and Regions[J]. International Journal on Artificial Intelligence Tools, 2011, 20(4):721-751. [11] CHEN Dechang, LU C T, KOU Yufeng, et al. On Detecting Spatial Outliers[J]. GeoInformatica, 2008, 12(4):455-475. [12] CHAWLA S, SUN P. SLOM:A New Measure for Local Spatial Outliers[J]. Knowledge and Information Systems, 2006, 9(4):412-429. [13] DENG Min, LIU Qiliang, LI Guangqiang. Spatial Outlier Detection Method Based on Spatial Clustering[J]. Journal of Remote Sensing, 2010, 14(5):944-958. [14] 唐建波, 刘启亮, 邓敏, 等. 空间层次聚类显著性判别的重排检验方法[J]. 测绘学报, 2016, 45(2):233-240. DOI:10.11947/j.AGCS.2016.20140605. TANG Jianbo, LIU Qiliang, DENG Min, et al. A Permutation Test for Identifying Significant Clusters in Spatial Dataset[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(2):233-240. DOI:10.11947/j.AGCS.2016.20140605. [15] HE Zengyou, DENG Shengchun, XU Xiaofei. Outlier Detection Integrating Semantic Knowledge[M]//MENG Xiaofeng, SU Jianwen, WANG Yujun. Advances in Web-age Information Management. Berlin, Heidelberg:Springer, 2002:126-131. [16] PAPADIMITRIOU S, FALOUTSOS C. Cross-Outlier Detection[M]//MENG Xiaofeng, SU Jianwen, WANG Yujun. Advances in Spatial and Temporal Databases. Berlin, Heidelberg:Springer, 2003:199-213. [17] HE Zengyou, XU Xiaofei, HUANG J Z, et al. Mining Class Outliers:Concepts, Algorithms and Applications in CRM[J]. Expert Systems with Applications, 2004, 27(4):681-697. [18] HEWAHI N M, SAAD M K. Class Outliers Mining:Distance-Based Approach[J]. International Journal of Computer and Information Engineering, 2007, 1(9):2805-2818. [19] LIU Xutong, CHEN Feng, LU C T. On Detecting Spatial Categorical Outliers[J]. GeoInformatica, 2014, 18(3):501-536. [20] LU Y C, CHEN Feng, WANG Yating, et al. Discovering Anomalies on Mixed-type Data Using a Generalized Student-t Based Approach[J]. IEEE Transactions on Knowledge and Data Engineering, 2016, 28(10):2582-2595. [21] JANEJA V P, PALANISAMY R. Multi-domain Anomaly Detection in Spatial Datasets[J]. Knowledge and Information Systems, 2013, 36(3):749-788. [22] ZHENG Yu, ZHANG Huichu, YU Yong. Detecting Collective Anomalies from Multiple Spatio-temporal Datasets Across Different Domains[C]//Proceedings of the 23rd SIGSPATIAL International Conference on Advances in Geographic Information Systems. Seattle:ACM, 2015:2. [23] 蔡建南, 刘启亮, 徐枫, 等. 多层次空间同位模式自适应挖掘方法[J]. 测绘学报, 2016, 45(4):475-485. DOI:10.11947/j.AGCS.2016.20150337. CAI Jiannan, LIU Qiliang, XU Feng, et al. An Adaptive Method for Mining Hierarchical Spatial Co-location Patterns[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(4):475-485. DOI:10.11947/j.AGCS.2016.20150337. [24] PEI Tao, WANG Weiyi, ZHANG Hengcai, et al. Density-based Clustering for Data Containing Two Types of Points[J]. International Journal of Geographical Information Science, 2015, 29(2):175-193. [25] KOLINGEROVÁ I, ŽALIK B. Reconstructing Domain Boundaries within a Given Set of Points, Using Delaunay Triangulation[J]. Computers & Geosciences, 2006, 32(9):1310-1319. [26] HUBERT M, VANDERVIEREN E. An Adjusted Boxplot for Skewed Distributions[J]. Computational Statistics & Data Analysis, 2008, 52(12):5186-5201. [27] EDELSBRUNNER H, KIRKPATRICK D, SEIDEL R. On the Shape of a Set of Points in the Plane[J]. IEEE Transactions on Information Theory, 1983, 29(4):551-559. [28] 王远飞, 何洪林. 空间数据分析方法[M]. 北京:科学出版社, 2007:60. WANG Yuanfei, HE Honglin. Spatial Data Analysis Method[M]. Beijing:Science Press, 2007:60. [29] LEUNG Y, ZHANG Jiangshe, XU Zongben. Clustering by Scale-space Filtering[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(12):1396-1410. [30] PEI Tao, ZHU Axing, ZHOU Chenghu, et al. A New Approach to the Nearest-neighbour Method to Discover Cluster Features in Overlaid Spatial Point Processes[J]. International Journal of Geographical Information Science, 2006, 20(2):153-168. [31] DENG Min, HE Zhanjun, LIU Qiliang, et al. Multi-scale Approach to Mining Significant Spatial Co-location Patterns[J]. Transactions in GIS, 2017, 21(5):1023-1039. [32] RIPLEY B D. The Second-Order Analysis of Stationary Point Processes[J]. Journal of Applied Probability, 1976, 13(2):255-266. [33] 毛媛媛, 丁家骏. 抢劫与抢夺犯罪行为时空分布特征研究——以上海市浦东新区为例[J]. 人文地理, 2014, 29(1):49-54. MAO Yuanyuan, DING Jiajun. Study on Spatial-temporal Patterns of Robbery and Snatch:A Case Study of Pudong New Area, Shanghai[J]. Human Geography, 2014, 29(1):49-54. |