[1] 王巍. 惯性技术研究现状及发展趋势[J]. 自动化学报, 2013, 39(6):723-729. WANG Wei. Status and Development Trend of Inertial Technology[J]. Acta Automatica Sinica, 2013, 39(6):723-729. [2] 甘雨. GNSS/INS组合系统模型精化及载波相位定位测姿[D]. 郑州:信息工程大学, 2015. GAN Yu. GNSS/INS Integrated System Model Refining and Position and Attitude Determination Using Carrier Phase[D]. Zhengzhou:Information Engineering University, 2015. [3] HARLE R. A Survey of Indoor Inertial Positioning Systems for Pedestrians[J]. IEEE Communications Surveys & Tutorials, 2013, 15(3):1281-1293. [4] 吴富梅. GNSS/INS组合导航误差补偿与自适应滤波理论的拓展[D]. 郑州:信息工程大学, 2010. WU Fumei. Error Compensation and Extension of Adaptive Filtering Theory in GNSS/INS Integrated Navigation[D]. Zhengzhou:Information Engineering University, 2010. [5] STEBLER Y, GUERRIER S, SKALOUD J, et al. Generalized Method of Wavelet Moments for Inertial Navigation Filter Design[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(3):2269-2283. [6] 张玉莲, 储海荣, 张宏巍, 等. MEMS陀螺随机误差特性研究及补偿[J]. 中国光学, 2016, 9(4):501-510. ZHANG Yulian, CHU Hairong, ZHANG Hongwei, et al. Characteristics and Compensation Method of MEMS Gyroscope Random Error[J]. Chinese Optics, 2016, 9(4):501-510. [7] DONOHO D L. De-noising by Soft-thresholding[J]. IEEE Transactions on Information Theory, 1995, 41(3):613-627. [8] 吴富梅, 杨元喜. 基于小波阈值消噪自适应滤波的GPS/INS组合导航[J]. 测绘学报, 2007, 36(2):124-128. WU Fumei, YANG Yuanxi. GPS/INS Integrated Navigation by Adaptive Filtering Based on Wavelet Threshold De-noising[J]. Acta Geodaetica et Cartographica Sinica, 2007, 36(2):124-128. [9] 刘晓光, 胡静涛, 高雷, 等. 基于改进小波阈值的微机械陀螺去噪方法[J]. 中国惯性技术学报, 2014, 22(2):233-236. LIU Xiaoguang, HU Jingtao, GAO Lei, et al. Micro Mechanical Gyro Denoising Method Based on Improved Wavelet Threshold[J]. Journal of Chinese Inertial Technology, 2014, 22(2):233-236. [10] 甘雨, 隋立芬. 基于经验模分解的陀螺信号消噪[J]. 测绘学报, 2011, 40(6):745-750. GAN Yu, SUI Lifen. De-noising Method for Gyro Signal Based on EMD[J]. Acta Geodaetica et Cartographica Sinica, 2011, 40(6):745-750. [11] HUANG N E, SHEN Zheng, LONG S R, et al. The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-stationary Time Series Analysis[J]. Proceedings of the Royal Society A:Mathematical, Physical and Engineering Sciences, 1998, 454(1971):903-995. [12] GAN Yu, SUI Lifen, WU Jiangfei, et al. An EMD Threshold De-noising Method for Inertial Sensors[J]. Measurement, 2014, 49:34-41. [13] 崔冰波, 陈熙源, 宋锐. EMD阈值滤波在光纤陀螺漂移信号去噪中的应用[J]. 光学学报, 2015, 35(2):53-58. CUI Bingbo, CHEN Xiyuan, SONG Rui. Application of EMD Threshold Filtering for Fiber Optical Gyro Drift Signal De-noising[J]. Acta Optica Sinica, 2015, 35(2):53-58. [14] 刘晓光, 郝沙沙, 王光磊, 等. 基于自相关特性的经验模态分解微机械陀螺去噪方法[J]. 中国惯性技术学报, 2016, 24(4):537-541. LIU Xiaoguang, HAO Shasha, WANG Guanglei, et al. Micro Mechanical Gyro Denoising Method Based on EMD Autocorrelation[J]. Journal of Chinese Inertial Technology, 2016, 24(4):537-541. [15] 孙一航, 武建文, 廉世军, 等. 结合经验模态分解能量总量法的断路器振动信号特征向量提取[J]. 电工技术学报, 2014, 29(3):228-236. SUN Yihang, WU Jianwen, LIAN Shijun, et al. Extraction of Vibration Signal Feature Vector of Circuit Breaker Based on Empirical Mode Decomposition Amount of Energy[J]. Transactions of China Electrotechnical Society, 2014, 29(3):228-236. [16] 王金贵, 张苏. 基于频域约束独立成分分析的经验模态分解去噪方法[J]. 煤炭学报, 2017, 42(3):621-629. WANG Jingui, ZHANG Su. EMD Denoising Method Based on Frequency Domain Constrained Independent Component Analysis[J]. Journal of China Coal Society, 2017, 42(3):621-629. [17] 窦东阳, 赵英凯. 集合经验模式分解在旋转机械故障诊断中的应用[J]. 农业工程学报, 2010, 26(2):190-196. DOU Dongyang, ZHAO Yingkai. Application of Ensemble Empirical Mode Decomposition in Failure Analysis of Rotating Machinery[J]. Transactions of the CSAE, 2010, 26(2):190-196. [18] 李利品, 党瑞荣, 樊养余. 改进的EEMD算法及其在多相流检测中的应用[J]. 仪器仪表学报, 2014, 35(10):2365-2371. LI Lipin, DANG Ruirong, FAN Yangyu. Modified EEMD De-noising Method and Its Application in Multiphase Flow Measurement[J]. Chinese Journal of Scientific Instrument, 2014, 35(10):2365-2371. [19] WU Zhaohua, HUANG N E. Ensemble Empirical Mode Decomposition:A Noise-assisted Data Analysis Method[J]. Advances in Adaptive Data Analysis, 2009, 1(1):1-41. [20] KOPSINIS Y, MCLAUGHLIN S. Development of EMD-based Denoising Methods Inspired by Wavelet Thresholding[J]. IEEE Transactions on Signal Processing, 2009, 57(4):1351-1362. [21] KOMATY A, BOUDRAA A O, AUGIER B, et al. EMD-based Filtering Using Similarity Measure Between Probability Density Functions of IMFs[J]. IEEE Transactions on Instrumentation and Measurement, 2014, 63(1):27-34. [22] YANG Gongliu, LIU Yuanyuan, WANG Yanyong, et al. EMD Interval Thresholding Denoising Based on Similarity Measure to Select Relevant Modes[J]. Signal Processing, 2015, 109(1):95-109. [23] SHIN, HWAN E. Estimation Techniques for Low-cost Inertial Navigation[D]. Calgary:University of Calgary, 2005. [24] SAVAGE P G. Strapdown Inertial Navigation Integration Algorithm Design Part 1:Attitude Algorithms[J]. Journal of Guidance, Control, and Dynamics, 1998, 21(1):19-28. [25] SAVAGE P G. Strapdown Inertial Navigation Integration Algorithm Design Part 2:Velocity and Position Algorithms[J]. Journal of Guidance, Control, and Dynamics, 1998, 21(2):208-221. |