Acta Geodaetica et Cartographica Sinica ›› 2018, Vol. 47 ›› Issue (2): 170-179.doi: 10.11947/j.AGCS.2018.20170515
Previous Articles Next Articles
YOU Haotian1, XING Yanqiu2, PENG Tao2, DING Jianhua2
Received:
2017-09-11
Revised:
2017-12-11
Online:
2018-02-20
Published:
2018-03-02
Supported by:
CLC Number:
YOU Haotian, XING Yanqiu, PENG Tao, DING Jianhua. Effects of Different LiDAR Intensity Normalization Methods on Scotch Pine Forest Leaf Area Index Estimation[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(2): 170-179.
[1] SUMNALL M J, FOX T R, WYNNE R H, et al. Estimating Leaf Area Index at Multiple Heights within the Understory Component of Loblolly Pine Forests from Airborne Discrete-return LiDAR[J]. International Journal of remote Sensing, 2016, 37(1):78-99. [2] BRÉDA N J J. Ground-based Measurements of Leaf Area Index:A Review of Methods, Instruments and Current Controversies[J]. Journal of Experimental Botany, 2003, 54(392):2403-2417. [3] GATZIOLIS D. Dynamic Range-Based Intensity Normalization for Airborne, Discrete Return LiDAR Data of Forest Canopies[J]. Photogrammetric Engineering & Remote Sensing, 2011, 77(3):251-259. [4] CHEN J M, BLACK T A. Measuring Leaf Area Index of Plant Canopies with Branch Architecture[J]. Agricultural and Forest Meteorology, 1991, 57(1-3):1-12. [5] CHEN J M, PAVLIC G, BROWN L, et al. Derivation and Validation of Canada-wide Coarse-resolution Leaf Area Index Maps Using High-resolution Satellite Imagery and Ground Measurements[J]. Remote Sensing of Environment, 2002, 80(1):165-184. [6] 尤号田, 邢艳秋, 王铮, 等. 利用LiDAR离散点云估测针叶林叶面积指数[J]. 西北林学院学报, 2014, 29(3):41-47. YOU Haotian, XING Yanqiu, WANG Zheng, et al. Estimation of the Leaf Area Index of Coniferous Forests Using LiDAR Discrete Point Cloud[J]. Journal of Northwest Forestry University, 2014, 29(3):41-47. [7] WOODGATE W, DISNEY M, ARMSTON J D, et al. An Improved Theoretical Model of Canopy Gap Probability for Leaf Area Index Estimation in Woody Ecosystems[J]. Forest Ecology and Management, 2015, 358:303-320. [8] FINNEY M A. FARSITE:Fire Area Simulator-model Development and Evaluation[R]. RMRS-RP-4, USDA Forest Service, 1998. [9] MORSDORF F, KÖTZ B, MEIER E, et al. Estimation of LAI and Fractional Cover from Small Footprint Airborne Laser Scanning Data Based on Gap Fraction[J]. Remote Sensing of Environment, 2006, 104(1):50-61. [10] WANG Cheng, GLENN N F. Integrating LiDAR Intensity and Elevation Data for Terrain Characterization in A Forested Area[J]. IEEE Geoscience and Remote Sensing Letters, 2009, 6(3):463-466. [11] KIM S, MCGAUGHEY R J, ANDERSEN H E, et al. Tree Species Differentiation Using Intensity Data Derived from Leaf-on and Leaf-off Airborne Laser Scanner Data[J]. Remote Sensing of Environment, 2009, 113(8):1575-1586. [12] HOPKINSON C, CHASMER L. Testing LiDAR Models of Fractional Cover Across Multiple Forest Ecozones[J]. Remote Sensing of Environment, 2009, 113(1):275-288. [13] ZHAO Kaiguang, POPESCU S. LiDAR-based Mapping of Leaf Area Index and Its Use for Validating GLOBCARBON Satellite LAI Product in a Temperate Forest of the Southern USA[J]. Remote Sensing of Environment, 2009, 113(8):1628-1645. [14] 尤号田, 邢艳秋, 冉慧, 等. 基于LiDAR点云能量信息的樟子松郁闭度反演方法[J]. 北京林业大学学报, 2014, 36(6):30-35. YOU Haotian, XING Yanqiu, RAN Hui, et al. Inversion Method for the Crown Density of Mongolian Scotch Pine from Point Cloud Data of Small-footprint LiDAR[J]. Journal of Beijing Forestry University, 2014, 36(6):30-35. [15] LOVELL J L, JUPP D L B, CULVENOR D S, et al. Using Airborne and Ground-based Ranging LiDAR to Measure Canopy Structure in Australian Forests[J]. Canadian Journal of Remote Sensing, 2003, 29(5):607-622. [16] SOLBERG S. Comparing Discrete Echoes Counts and Intensity Sums from ALS for Estimating Forest LAI and Gap Fraction[C]//Proceedings of the SilviLaser 2008:the 8th International Conference on LiDAR Applications in Forest Assessment and Inventory. Edinburgh:Heriot-Watt University, 2008:301-304. [17] GARCÍA M, RIAÑO D, CHUVIECO E, et al. Estimating Biomass Carbon Stocks for a Mediterranean Forest in Central Spain Using LiDAR Height and Intensity Data[J]. Remote Sensing of Environment, 2010, 114(4):816-830. [18] HEISKANEN J, KORHONEN L, HIETANEN J, et al. Use of Airborne LiDAR for Estimating Canopy Gap Fraction and Leaf Area Index of Tropical Montane Forests[J]. International Journal of Remote Sensing, 2015, 36(10):2569-2583. [19] 邢艳秋, 霍达, 尤号田, 等. 基于机载LiDAR单束激光穿透指数的白桦林LAI估测[J]. 应用生态学报, 2016, 27(11):3469-3478. XING Yanqiu, HUO Da, YOU Haotian, et al. Estimation of Birch Forest LAI Based on Single Laser Penetration Index of Airborne LiDAR Data[J]. Chinese Journal of Applied Ecology, 2016, 27(11):3469-3478. [20] 骆社周, 王成, 张贵宾, 等. 机载激光雷达森林叶面积指数反演研究[J]. 地球物理学报, 2013, 56(5):1467-1475. LUO Shezhou, WANG Cheng, ZHANG Guibin, et al. Forest Leaf Area Index (LAI) Inversion Using Airborne LiDAR Data[J]. Chinese Journal of Geophysics, 2013, 56(5):1467-1475. [21] SONG C. Estimating Tree Crown Size with Spatial Information of High Resolution Optical Remotely Sensed Imagery[J]. International Journal of Remote Sensing, 2007, 28(15):3305-3322. [22] MEANS J E, ACKER S A, HARDING D J, et al. Use of Large-footprint Scanning Airborne LiDAR to Estimate Forest Stand Characteristics in the Western Cascades of Oregon[J]. Remote Sensing of Environment, 1999, 67(3):298-308. [23] JELALIAN A V. Laser Radar Systems[M]. Boston:Artech House, 1992:3-10. [24] JUTZI B, STILLA U. Range Determination with Waveform Recording Laser Systems Using a Wiener Filter[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2006, 61(2):95-107. [25] HÖFLE B, PFEIFER N. Correction of Laser Scanning Intensity Data:Data and Model-driven Approaches[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2007, 62(6):415-433. [26] RONCAT A, BERGAUER G, PFEIFER N. B-spline Deconvolution for Differential Target Cross-section Determination in Full-waveform Laser Scanning Data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2011, 66(4):418-428. [27] YAN W Y, SHAKER A. Radiometric Correction and Normalization of Airborne LiDAR Intensity Data for Improving Land-cover Classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(12):7658-7673. [28] KORPELA I, ØRKA H O, HYYPPÄ J, et al. Range and AGC Normalization in Airborne Discrete-return LiDAR Intensity Data for Forest Canopies[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2010, 65(4):369-379. [29] KAASALAINEN S, JAAKKOLA A, KAASALAINEN M, et al. Analysis of Incidence Angle and Distance Effects on Terrestrial Laser Scanner Intensity:Search for Correction Methods[J]. Remote Sensing, 2011, 3(10):2207-2221. [30] COREN F, STERZAI P. Radiometric Correction in Laser Scanning[J]. International Journal of Remote Sensing, 2006, 27(15):3097-3104. [31] KUKKO A, KAASALAINEN S, LITKEY P. Effect of Incidence Angle on Laser Scanner Intensity and Surface Data[J]. Applied Optics, 2008, 47(7):986-992. [32] MORSDORF F, FREY O, MEIER E, et al. Assessment of the Influence of Flying Altitude and Scan Angle on Biophysical Vegetation Products Derived from Airborne Laser Scanning[J]. International Journal of Remote Sensing, 2008, 29(5):1387-1406. [33] HALL S A, BURKE I C, BOX D O, et al. Estimating Stand Structure Using Discrete-return LiDAR:An Example from Low Density, Fire Prone Ponderosa Pine Forests[J]. Forest Ecology and Management, 2005, 208(1-3):189-209. [34] JENSEN J L R, HUMES K S, VIERLING L A, et al. Discrete Return LiDAR-based Prediction of Leaf Area Index in Two Conifer Forests[J]. Remote Sensing of Environment, 2008, 112(10):3947-3957. [35] PEDUZZI A, WYNNE R H, FOX T R, et al. Estimating Leaf Area Index in Intensively Managed Pine Plantations Using Airborne Laser Scanner Data[J]. Forest Ecology and Management, 2012, 270:54-65. [36] HOPKINSON C. The Influence of Flying Altitude, Beam Divergence, and Pulse Repetition Frequency on Laser Pulse Return Intensity and Canopy Frequency Distribution[J]. Canadian Journal of Remote Sensing, 2007, 33(4):312-324. |
[1] | WANG Jie, WANG Nazi, XU Tianhe, GAO Fan, HE Yunqiao. Sea level estimation using the combination of GNSS observations [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(2): 201-211. |
[2] | MAO Feiyu, GONG Xiaopeng, GU Shengfeng, WANG Chenchen, LOU Yidong. Receiver pseudorange biases of BDS-3 satellite navigation signal: modeling and validation [J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(4): 457-465. |
[3] | TANG Chengpan, SU Chengeng, HU Xiaogong, GAO Weiguang, LIU Li, LU Jun, CHEN Ying, LIU Cheng, WANG Wei, ZHOU Shanshi. Characterization of pesudorange bias and its effect on positioning for BDS satellites [J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(9): 1131-1138. |
[4] | LIU Weiping, HAO Jinming, Lü Zhiwei, XIE Jiantao, LIU Jing, JIAO Bo. Evaluation and comparative analysis of BDS-3 signal-in-space range error [J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(9): 1213-1221. |
[5] | ZHU Huizhong, LEI Xiaoting, XU Aigong, LI Jun, GAO Meng. The integer ambiguity resolution of BDS triple-frequency between long range stations with GEO satellite constraints [J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(9): 1222-1234. |
[6] | LI Jiatian, WANG Congcong, A Xiaohui, YAN Ling, ZHU Zhihao, GAO Peng. Method of close-range space intersection combining multi-image forward intersection with single hidden layer neural network [J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(6): 736-745. |
[7] | WANG Hu, DANG Yamin, HOU Yangfei, BEI Jinzhong, WANG Jiexian, BAI Guixia, CHENG Yingyan, ZHANG Shoujian. Rapid and precise solution of the whole network of thousands of stations in China based on PPP network solution by UPD fixed technology [J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(3): 278-291. |
[8] | RUAN Rengui, JIA Xiaolin, ZHU Jun, HUYAN Zongbo, FENG Laiping, LI Jie. Integrated orbit determination and time synchronization for BDS-3 satellites with satellite-ground and inter-satellite one-way Ka-pseudoranges [J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(3): 292-299. |
[9] | ZHU Huizhong, LI Jun, YU Zeran, ZHANG Kai, XU Aigong. The algorithm of multi-frequency carrier phase integer ambiguity resolution with GPS/BDS between long range network RTK reference stations [J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(3): 300-311. |
[10] | CHEN Zhengsheng, ZHANG Qinghua, LI Linyang, LI Xuerui, Lü Hao. An improved carrier phase smoothing pseudorange algorithm with self-modeling of ionospheric delay variation [J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(9): 1107-1118. |
[11] | CHEN Cheng, JIN Lixin, BIAN Shaofeng, LI Songlin. Infinite expansions of the auxiliary latitudes with respect to the geodetic latitude [J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(4): 422-430. |
[12] | RUAN Rengui, WEI Ziqing, JIA Xiaolin. BDS-3 satellite orbit and clock determination with one-way inter-satellite pseudorange and monitoring station data [J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(3): 269-275. |
[13] | FAN Haopeng, SUN Zhongmiao, ZHANG Liping, LIU Xiaogang. A two-step estimation method of troposphere delay with consideration of mapping function errors [J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(3): 286-294. |
[14] | LI Guoyuan, HUANG Jiapeng, TANG Xinming, HUANG Genghua, ZHOU Shihong, ZHAO Yanming. Influence of Range Gate Width on Detection Probability and Ranging Accuracy of Single Photon Laser Altimetry Satellite [J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(11): 1487-1494. |
[15] | WANG Jie, HE Xiyang. Correction Model of BeiDou Code Systematic Multipath Errors and Its Impacts on Single-frequency PPP [J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(7): 841-847. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||