[1] 李德仁, 姚远, 邵振峰. 智慧城市的概念、支撑技术及应用[J]. 工程研究-跨学科视野中的工程, 2012, 4(4):313-323. LI Deren, YAO Yuan, SHAO Zhenfeng. The Concept, Supporting Technologies and Applications of Smart City[J]. Journal of Engineering Studies, 2012, 4(4):313-323. [2] SCHNABEL R, WAHL R, WESSEL R, et al. Shape Recognition in 3D Point-clouds[C]//The 16-th International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision'2008. Czech Republic:UNION Agency-Science Press, 2008:65-72. [3] LI Yangyan, WU Xiaokun, CHRYSATHOU Y, et al. GlobFit:Consistently Fitting Primitives by Discovering Global Relations[C]//Proceeding of ACM SIGGRAPH. Vancouver, British Columbia, Canada:ACM, 2011:52. [4] MAHABADI R K, HANE C, POLLEFEYS M. Segment Based 3D Object Shape Priors[C]//IEEE Computer Vision and Pattern Recognition. Boston, MA:IEEE, 2015:2838-2846. [5] 宫钰嵩. RGBD数据驱动的室内景物三维建模方法研究[D]. 南京:南京大学, 2015. GONG Yusong. Research on 3D Modeling of Indoor Objects and Scenes Based on RGBD Data[D]. Nanjing:Nanjing University, 2015. [6] DORNINGER P, PFEIFER N. A Comprehensive Automated 3D Approach for Building Extraction, Reconstruction, and Regularization from Airborne Laser Scanning Point Clouds[J]. Sensors, 2008, 8(11):7323-7343. [7] 秦彩杰, 管强. 三维点云数据分割研究现状[J]. 宜宾学院学报, 2017, 17(6):30-35. QIN Caijie, GUAN Qiang. Research Status of 3D Point Cloud Data Segmentation[J]. Journal of Yibin University, 2017, 17(6):30-35. [8] BHANU B, LEE S, HO C C, et al. Range Data Processing:Representation of Surfaces by Edges[C]//Proceedings of the Eighth International Conference on Pattern Recognition. Paris, France:[s.n.], 1986:236-238. [9] JIANG Xiaoyi, BUNKE H. Edge Detection in Range Images Based on Scan Line Approximation[J]. Computer Vision and Image Understanding, 1999, 73(2):183-199. [10] BESL P J, JAIN R C. Segmentation through Variable-order Surface Fitting[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 10(2):167-192. [11] KOSTER K, SPANN M. MIR:An Approach to Robust Clustering-application to Range Image Segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(5):430-444. [12] ROTTENSTEINER F. Automatic Generation of High-quality Building Models from Lidar Data[J]. IEEE Computer Graphics and Applications IEEE, 2003, 23(6):42-50. [13] TÓVÁRI D, PFEIFER N. Segmentation Based Robust Interpolation-A New Approach to Laser Data Filtering[M]//International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences. Enschede, The Netherlands:[s.n.], 2005:12-14. [14] WANG Zhe, LIU Hong, QIAN Yueliang, et al. Real-Time Plane Segmentation and Obstacle Detection of 3D Point Clouds for Indoor Scenes[M]//FUSIELLO A, MURINO V, CUCCHIARA R. Computer Vision-ECCV 2012. Berlin, Heidelberg:Springer, 2012:22-31. [15] PAPON J, ABRAMOV A, SCHOELER M, et al. Voxel Cloud Connectivity Segmentation-Supervoxels for Point Clouds[C]//IEEE Computer Vision and Pattern Recognition. Portland, OR:IEEE, 2013:2027-2034. [16] FILIN S. Surface Clustering from Airborne Laser Scanning Data[J].International Archives of Photogrammetry and Remote Sensing, 2002:XXXⅡ, 3A:119-124. [17] VOSSELMAN G, DIJKMAN S. 3D Building Model Reconstruction From Point Clouds and Ground Plans[J]. International Archives of Photogrammetry & Remote Sensing, 2001, 34(Part 3/W4):37-43. [18] ZHAN Qingming, YU Liang, LIANG Yubing. A Point Cloud Segmentation Method based on Vector Estimation and Color Clustering[C]//IEEE 2nd International Conference on Information Science and Engineering. Hangzhou, China, China:IEEE, 2011:3463-3466. [19] ZHAN Qingming, YU Liang. Segmentation of LiDAR Point Cloud based on Similarity Measures in Multi-Dimension Euclidean Space[M]//ZENG D. Advances in Computer Science and Engineering. Berlin, Heidelberg:Springer, 2012:349-357. [20] HOLZ D, HOLZER S, RUSU R B, et al. Real-Time Plane Segmentation Using RGB-D Cameras[M]//RÖFER T, MAYER N M, SAVAGE J, et al. RoboCup 2011:Robot Soccer World Cup XV. Berlin, Heidelberg:Springer, 2012:306-317. [21] SCHOENBERG J R, NATHAN A, CAMPBELL M. Segmentation of Dense Range Information in Complex Urban Scenes[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Taipei, Taiwan:IEEE, 2010:2033-2038. [22] SALLEM N K, DEVY M. Extended GrabCut for 3D and RGB-D Point Clouds[M]//BLANC-TALON J, KASINSKI A, PHILIPS W, et al. Advanced Concepts for Intelligent Vision Systems. Cham:Springer, 2013:354-365. [23] GEETHA M, RAKENDU R. An Improved Method for Segmentation of Point Cloud Using Minimum Spanning Tree[C]//IEEE International Conference on Communications and Signal Processing. Melmaruvathur, India:IEEE, 2014:833-837. [24] YANG Jingyu, GAN Ziqiao, LI Kun, et al. Graph-based Segmentation for RGB-D Data Using 3-D Geometry Enhanced Superpixels[J]. IEEE Transactions on Cybernetics, 2017, 45(5):927-940. [25] FISCHLER M A, BOLLES R C. Random Sample Consensus:A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography[M]//Readings in Computer Vision.[s.l.]:Elsevier, 1987:726-740. [26] TARSHA-KURDI F, LANDES T, GRUSSENMEYER P. Hough-Transform and Extended RANSAC Algorithms for Automatic Detection of 3D Building Roof Planes from LiDAR Data[C]//Proceedings of the ISPRS Workshop on Laser Scanning, Espoo:ISPRS.2007, 36:407-412. [27] SCHNABEL R, WAHL R, KLEIN R. Efficient RANSAC for Point-Cloud Shape Detection[J]. Computer Graphics Forum, 2010, 26(2):214-226. [28] CHEN Dong, ZHANG Liqiang, LI J, et al. Urban Building Roof Segmentation From Airborne Lidar Point Clouds[J]. International Journal of Remote Sensing, 2012, 33(20):6497-6515. [29] GELFAND N, GUIBAS L J. Shape Segmentation Using Local Slippage Analysis[C]//Proceedings of Eurographics/ACM SIGGRAPH Symposium on Geometry Processing. Nice, France:ACM, 2004:214-223. [30] AWADALLAH M, ABBOTT L, GHANNAM S. Segmentation of Sparse Noisy Point Clouds Using Active Contour Models[C]//IEEE International Conference on Image Processing. Paris, France:IEEE, 2015:6061-6065. [31] WANG Yanmin, SHI Hongbin. A Segmentation Method for Point Cloud Based on Local Sample and Statistic Inference[M]//BIAN F, XIE Y. Geo-Informatics in Resource Management and Sustainable Ecosystem. Berlin, Heidelberg:Springer, 2015:274-282. [32] MA Teng, WU Zhuangzhi, FENG Lu, et al. Point Cloud Segmentation Through Spectral Clustering[C]//IEEE 2nd International Conference on Information Science and Engineering. Hangzhou, China:IEEE, 2011:1-4. [33] NURUNNABI A, BELTON D, WEST G. Robust Segmentation in Laser Scanning 3D Point Cloud Data[C]//IEEE International Conference on Digital Image Computing Techniques and Applications. Fremantle, WA, Australia:IEEE, 2013:1-8. [34] WOLF D, PRANKL J, VINCZE M. Fast Semantic Segmentation of 3D Point Clouds Using a Dense CRF with Learned Parameters[C]//IEEE International Conference on Robotics and Automation. Seattle, WA:IEEE, 2015:4867-4873. [35] GREEN W R, GROBLER H. Normal Distribution Transform Graph-based Point Cloud Segmentation[C]//Pattern Recognition Association of South Africa and Robotics and Mechatronics International Conference. Port Elizabeth, South Africa:IEEE, 2015:54-59. [36] VINCENT É, LAGANIÈRE R, Detecting Planar Homographies in an Image Pair[C]//Proceedings of the 2nd International Symposium on Image and Signal Processing and Analysis. Pula, Croatia, Croatia:IEEE, 2001:182-187. [37] KANAZAWA Y, KAWAKAMI H. Detection of Planar Regions with Uncalibrated Stereo Using Distributions of Feature Points[C]//Proceedings of the British Machine Vision Conference.[s.l.]:BMVA Press, 2004:247-256. [38] ZULIANI M, KENNEY C S, MANJUNATH B S. The Multiransac Algorithm and Its Application to Detect Planar Homographies[C]//IEEE International Conference on Image Processing. Genova, Italy:IEEE, 2005:Ⅲ-153. [39] ESTER M, KRIEGEL H P, SANDER J, et al. A Density-based Algorithm for Discovering Clusters in Large Spatial Databases with Noise[C]//Proceedings of 2nd International Conference on Knowledge Discovery and Data Mining.[s.l.]:AAAI Press, 1996:226-231. [40] COMANICIU D, MEER P. Mean Shift:A Robust Approach Toward Feature Space Analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(5):603-619. |