[1] 黄维彬. 近代平差理论及其应用[M]. 北京:解放军出版社, 1992. HUANG Weibin. Modern Adjustment Theory and Its Application[M]. Beijing:PLA Publishing House, 1992. [2] 杨元喜. 自适应动态导航定位[M]. 北京:测绘出版社, 2006. YANG Yuanxi. Adaptive Navigation and Kinematic Positioning[M]. Beijing:Surveying and Mapping Press, 2006. [3] YANG Y, HE H, XU G. Adaptively Robust Filtering for Kinematic Geodetic Positioning[J]. Journal of Geodesy, 2001, 75(2-3):109-116. [4] 李博峰. 混合整数GNSS模型参数估计理论与方法[M]. 北京:测绘出版社, 2014. LI Bofeng. Theory and Method of Parameter Estimation in Mixed Integer GNSS Model[M]. Beijing:Surveying and Mapping Press, 2014. [5] LI Bofeng, ZHANG Zhetao, SHEN Yunzhong, et al. A Procedure for the Significance Testing of Unmodeled Errors in GNSS Observations[J]. Journal of Geodesy, 2018, 92(10):1171-1186. [6] ZHANG Zhentao, LI Bofeng, SHEN Yunzhong. Comparison and Analysis of Unmodelled Errors in GPS and BeiDou Signals[J]. Geodesy and Geodynamics, 2017, 8(1):41-48. [7] GAZIT R. Digital Tracking Filters with High Order Correlated Measurement Noise[J]. IEEE Transactions on Aerospace and Electronic Systems, 1997, 33(1):171-177. [8] 黄贤源, 隋立芬, 范澎湃. 有色观测噪声的随机模型级数表示及其补偿法[J]. 武汉大学学报(信息科学版), 2008, 33(6):644-647. HUANG Xianyuan, SUI Lifen, FAN Pengpai. A New Approach for Colored Measurement Noises by Correcting Random Model[J]. Geomatics and Information Science of Wuhan University, 2008, 33(6):644-647. [9] 林旭, 罗志才, 许闯, 等. 有色噪声的自协方差最小二乘估计[J]. 测绘学报, 2013, 42(6):804-809. LIN Xu, LUO Zhicai, XU Chuang, et al. Autocovariance Least Squares Estimation for Colored Noise[J]. Acta Geodaetica et Cartographica Sinica, 2013, 42(6):804-809. [10] 杨元喜, 徐天河. 基于移动开窗法协方差估计和方差分量估计的自适应滤波[J]. 武汉大学学报(信息科学版), 2003, 28(6):714-718. YANG Yuanxi, XU Tianhe. An Adaptive Kalman Filter Combining Variance Component Estimation with Covariance Matrix Estimation Based on Moving Window[J]. Geomatics and Information Science of Wuhan University, 2003, 28(6):714-718. [11] 崔先强, 杨元喜, 高为广. 多种有色噪声自适应滤波算法的比较[J]. 武汉大学学报(信息科学版), 2006, 31(8):731-735. CUI Xianqiang, YANG Yuanxi, GAO Weiguang. Comparison of Adaptive Filter Arithmetics in Controlling Influence of Colored Noises[J]. Geomatics and Information Science of Wuhan University, 2006, 31(8):731-735. [12] 宋迎春, 朱建军, 陈正阳. 动态定位中测量噪声时间相关的Kalman滤波[J]. 测绘学报, 2006, 35(4):328-331, 341. SONG Yingchun, ZHU Jianjun, CHEN Zhengyang. Kalman Filter for Kinematic Positioning with Timing Correlated Observation Noises[J]. Acta Geodaetica et Cartographica Sinica, 2006, 35(4):328-331, 341. [13] 薛树强, 杨元喜. 连续观测系统的平差模型与有色噪声补偿[J]. 测绘学报, 2014, 43(4):360-365. DOI:10.13485/j.cnki.11-2089.2014.0054. XUE Shuqiang, YANG Yuanxi. Adjustment Model and Colored Noise Reduction of Continuous Observation System[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(4):360-365. DOI:10.13485/j.cnki.11-2089.2014.0054. [14] LI Bofeng. Stochastic Modeling of Triple-frequency BeiDou Signals:Estimation, Assessment and Impact Analysis[J]. Journal of Geodesy, 2016, 90(7):593-610. [15] HOWIND J, KUTTERER H, HECK B. Impact of Temporal Correlations on GPS-derived Relative Point Positions[J]. Journal of Geodesy, 1999, 73(5):246-258. [16] LI Bofeng, ZHANG Lei, VERHAGEN S. Impacts of BeiDou Stochastic Model on Reliability:Overall Test, w-test and Minimal Detectable Bias[J]. GPS Solutions, 2017, 21(3):1095-1112. [17] AMIRI-SIMKOEEI A, JAZAERI S, ZANGENEH-NEJAD F, et al. Role of Stochastic Model on GPS Integer Ambiguity Resolution Success Rate[J]. GPS Solutions, 2016, 20(1):51-61. [18] CHANG Guobin. On Kalman Filter for Linear System with Colored Measurement Noise[J]. Journal of Geodesy, 2014, 88(12):1163-1170. [19] 赵长胜. 有色噪声滤波理论与算法[M]. 北京:测绘出版社, 2011. ZHAO Changsheng. Colored Noise Filtering Theory and Algorithms[M]. Beijing:Surveying and Mapping Press, 2011. [20] PETOVELLO M, O'KEEFE K, LACHAPELLE G, et al. Consideration of Time-correlated Errors in a Kalman Filter Applicable to GNSS[J]. Journal of Geodesy, 2009, 83(1):51-56. [21] 胡国荣, 欧吉坤. 改进的高动态GPS定位自适应卡尔曼滤波方法[J]. 测绘学报, 1999, 28(4):290-294. HU Guorong, OU Jikun. The Improved Method of Adaptive Kalman Filtering for GPS High Kinematic Positioning[J]. Acta Geodaetica et Cartographica Sinica, 1999, 28(4):290-294. [22] 赵长胜, 陶本藻. 有色噪声作用下的卡尔曼滤波[J]. 武汉大学学报(信息科学版), 2008, 33(2):180-182. ZHAO Changsheng, TAO Benzao. Kalman Filtering of Linear System with Colored Noises[J]. Geomatics and Information Science of Wuhan University, 2008, 33(2):180-182. [23] BRYSON JR A E, HENRIKSON L J. Estimation Using Sampled Data Containing Sequentially Correlated Noise[J]. Journal of Spacecraft and Rockets, 1968, 5(6):662-665. [24] KERMARREC G, SCHÖN S. Taking Correlations in GPS Least Squares Adjustments into Account with a Diagonal Covariance Matrix[J]. Journal of Geodesy, 2016, 90(9):793-805. [25] BONA P. Precision, Cross Correlation, and Time Correlation of GPS Phase and Code Observations[J]. GPS Solutions, 2000, 4(2):3-13. [26] LI Bofeng, SHEN Yunzhong, XU Peiliang. Assessment of Stochastic Models for GPS Measurements with Different Types of Receivers[J]. Chinese Science Bulletin, 2008, 53(20):3219-3225. [27] 杨元喜, 崔先强. 动态定位有色噪声影响函数——以一阶AR模型为例[J]. 测绘学报, 2003, 32(1):6-10. YANG Yuanxi, CUI Xianqiang. Influence Functions of Colored Noises on Kinematic Positioning:Taking the AR Model of First Class as an Example[J]. Acta Geodaetica et Cartographica Sinica, 2003, 32(1):6-10. [28] ASHCRAFT C, GRIMES R G, LEWIS J G. Accurate Symmetric Indefinite Linear Equation Solvers[J]. SIAM Journal on Matrix Analysis and Applications, 1998, 20(2):513-561. [29] GUO Jianfeng, OU Jikun, REN Chao. Partial Continuation Model and Its Application in Mitigating Systematic Errors of Double-differenced GPS Measurements[J]. Progress in Natural Science, 2005, 15(3):246-251. [30] ZHANG Zhentao, LI Bofeng, SHEN Yunzhong. Efficient Approximation for a Fully Populated Variance-covariance Matrix in RTK Positioning[J]. Journal of Surveying Engineering, 2018, 144(4):04018005. [31] El-RABBANY A E S. The Effect of Physical Correlations on the Ambiguity Resolution and Accuracy Estimation in GPS Differential Positioning[D]. Fredericton:University of New Brunswick, 1994. |