[1] 管泽霖, 管铮, 黄谟涛, 等. 局部重力场逼近理论和方法[M]. 北京:测绘出版社, 1997. GUAN Zelin, GUAN Zheng, HUANG Motao, et al. Theory and method of regional gravity field approximation[M]. Beijing:Surveying and Mapping Press, 1997. [2] 许厚泽. 关于高程系统的思考[J]. 地理空间信息, 2016, 14(1):1-3. XU Houze. Consideration on the height system[J]. Geospatial Information, 2016, 14(1):1-3. [3] 吴晓平. 似大地水准面的定义及在空中测量中涉及的问题[J]. 测绘科学, 2006, 31(6):24-25. WU Xiaoping. Title definition of quasi-geoid and some questions encountered in airborne gravimetry[J]. Science of Surveying and Mapping, 2006, 31(6):24-25. [4] 李建成. 我国现代高程测定关键技术若干问题的研究及进展[J]. 武汉大学学报(信息科学版), 2007, 32(11):980-987. LI Jiancheng. Study and progress in theories and crucial techniques of modern height measurement in China[J]. Geomatics and Information Science of Wuhan University, 2007, 32(11):980-987. [5] MARTINEC Z. Boundary-value problems for gravimetric determination of a precise geoid[M]. Berlin:Springer, 1998. [6] 荣敏. Stokes-Helmert方法确定大地水准面的理论与实践[D]. 郑州:信息工程大学, 2015. RONG Min. Stokes-Helmert method for geoid determination[D]. Zhengzhou:Information Engineering University, 2015. [7] WANG Y M, SALEH J, LI X, et al. The US gravimetric geoid of 2009(USGG2009):model development and evaluation[J]. Journal of Geodesy, 2012, 86(3):165-180. [8] HUANG J L, VÉRONNEAU M. Canadian gravimetric geoid model 2010[J]. Journal of Geodesy, 2013, 87(8):771-790. [9] 李建成. 最新中国陆地数字高程基准模型:重力似大地水准面CNGG2011[J]. 测绘学报, 2012, 41(5):651-660, 669. LI Jiancheng. The recent Chinese terrestrial digital height datum model:gravimetric quasi-geoid CNGG2011[J]. Acta Geodaetica et Cartographica Sinica, 2012, 41(5):651-660, 669. [10] 吴晓平, 李姗姗, 张传定.扰动重力边值问题与实际数据处理的研究[J]. 武汉大学学报(信息科学版), 2003, 28(S1):73-78. WU Xiaoping, LI Shanshan, ZHANG Chuanding. Problem of the boundary value of disturbing gravity and practical data processing[J]. Geomatics and Information Science of Wuhan University, 2003, 28(S1):73-78. [11] 李斐, 陈武, 岳建利. GPS在物理大地测量中的应用及GPS边值问题[J]. 测绘学报, 2003, 32(3):198-203. LI Fei, CHEN Wu, YUE Jianli. Physical geodesy with GPS[J]. Acta Geodaetica et Cartographica Sinica, 2003, 32(3):198-203. [12] 李斐, 陈武, 岳建利. GPS/重力边值问题的求解及应用[J]. 地球物理学报, 2003, 46(5):595-599. LI Fei, CHEN Wu, YUE Jianli. On solution and application of GPS/gravity boundary value problem[J]. Chinese Journal of Geophysics, 2003, 46(5):595-599. [13] 李斐, 岳建利, 张利明. 应用GPS/重力数据确定(似)大地水准面[J]. 地球物理学报, 2005, 48(2):294-298. LI Fei, YUE Jianli, ZHANG Liming. Determination of geoid by GPS/gravity data[J]. Chinese Journal of Geophysics, 2005, 48(2):294-298. [14] 魏子卿. 以地心参考椭球面为边界面的第二大地边值问题引论[J]. 测绘科学与工程, 2015, 35(1):1-6. WEI Ziqing. Introduction to the second geodetic boundary-value problem with the geocentric reference ellipsoidal surface as the boundary[J]. Geomatics Science and Engineering, 2015, 35(1):1-6. [15] SJÖBERG L E. Topographic effects by the Stokes-Helmert method of geoid and quasi-geoid determinations[J]. Journal of Geodesy, 2000, 74(2):255-268. [16] WANG Y. Precise computation of the direct and indirect topographic effects of Helmert's second method of condensation using SRTM30 digital elevation model[J]. Journal of Geodetic Science, 2011, 1(4):305-312. [17] 郭春喜, 王惠民, 王斌. 全国高分辨率格网地形和均衡改正的确定[J]. 测绘学报, 2002, 31(3):201-205. GUO Chunxi, WANG Huimin, WANG Bin. Determination of high resolution grid terrain and isostatic corrections in all China area[J]. Acta Geodaetica et Cartographica Sinica, 2002, 31(3):201-205. [18] 罗志才, 陈永奇, 宁津生. 地形对确定高精度局部大地水准面的影响[J]. 武汉大学学报(信息科学版), 2003, 28(3):340-344. LUO Zhicai, CHEN Yongqi, NING Jinsheng. Effect of terrain on the determination of high precise local gravimetric geoid[J]. Geomatics and Information Science of Wuhan University, 2003, 28(3):340-344. [19] FORSBERG R. A study of terrain reductions, density anomalies and geophysical inversion methods in gravity field modeling[R]. Columbus(Ohio):Ohio State University, 1984. [20] 马健, 魏子卿, 沈忱, 等. 地形改正与地形直接影响的转化关系[J]. 测绘科学技术学报, 2017, 34(3):245-250. MA Jian, WEI Ziqing, SHEN Chen, et al. Transformation relation between the topographic correction and the direct topographic effect[J]. Journal of Geomatics Science and Technology, 2017, 34(3):245-250. [21] 马健. Hotine-Helmert边值问题确定似大地水准面的理论与方法[D]. 郑州:信息工程大学, 2018. MA Jian. Theory and methods of the Hotine-Helmert boundary value problem for the determination of the quasi-geoid[D]. Zhengzhou:Information Engineering University, 2018. [22] 刘敏, 黄谟涛, 欧阳永忠, 等. 顾及地形效应的重力向下延拓模型分析与检验[J]. 测绘学报, 2016, 45(5):521-530. DOI:10.11947/j.AGCS.2016.20150453. LIU Min, HUANG Motao, OUYANG Yongzhong, et al. Test and analysis of downward continuation models for airborne gravity data with regard to the effect of topographic height[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(5):521-530. DOI:10.11947/j.AGCS.2016.20150453. [23] 翟振和, 王兴涛, 李迎春. 解析延拓高阶解的推导方法与比较分析[J]. 武汉大学学报(信息科学版), 2015, 40(1):134-138. ZHAI Zhenhe, WANG Xingtao, LI Yingchun. Solution and comparison of high order term of analytical continuation[J]. Geomatics and Information Science of Wuhan University, 2015, 40(1):134-138. [24] WEI Ziqing. High-order radial derivatives of harmonic function and gravity anomaly[J]. Journal of Physical Science and Application, 2014, 4(7):454-467. [25] 马健, 魏子卿, 任红飞, 等. 顾及远区影响的向下延拓实用算法[J]. 地球物理学进展, 2018, 33(2):498-502. MA Jian, WEI Ziqing, REN Hongfei, et al. Practical algorithm of the downward continuation considering the far-zone effect[J]. Progress in Geophysics, 2018, 33(2):498-502. [26] 李建成, 晁定波. 利用Poisson积分推导Hotine函数及Hotine公式应用问题[J]. 武汉大学学报(信息科学版), 2003, 28(特刊):55-57. LI Jiancheng, CHAO Dingbo. Derivation of Hotine function using poisson integral and application of Hotine formula[J]. Geomatics and Information Science of Wuhan University, 2003, 28(S1):55-57. [27] 程芦颖. 不同扰动位泛函间的积分变换广义核函数[J]. 测绘学报, 2013, 42(2):203-210. CHENG Luying. General kernel functions based on integral transformation among different disturbing potential elements[J]. Acta Geodaetica et Cartographica Sinica, 2013, 42(2):203-210. [28] VANÍČEK P, FEATHERSTONE W E. Performance of three types of Stokes's kernel in the combined solution for the geoid[J]. Journal of Geodesy, 1998, 72(12):684-697. |