[1] GELDERS D, VAN ZUILEN B. City events:short and serial reproduction effects on the city's image?[J]. Corporate Communications:An International Journal, 2013, 18(1):110-118. [2] LUCARELLI A, BERG P O. City branding:a state-of-the-art review of the research domain[J]. Journal of Place Management and Development, 2011, 4(1):9-27. [3] 北京演出行业协会. 2017年北京市演出市场统计与分析[EB/OL].[2018-01-09]. http://www.bjycxh.com/news/191.html. Beijing Trade Association for Performances. Beijing performance market statistics and analysis in 2017[EB/OL].[2018-01-09]. http://www.bjycxh.com/news/191.html. [4] NEILL D B, COOPER G F. A multivariate Bayesian scan statistic for early event detection and characterization[J]. Machine Learning, 2010, 79(3):261-282. [5] MARGINEANTU D, WONG W K, DASH D. Machine learning algorithms for event detection[J]. Machine Learning, 2010, 79(3):257-259. [6] 牛爽. 基于浮动车的城市道路交通异常事件检测的研究[D]. 北京:北京交通大学, 2008. NIU Shuang. Research on urban traffic incident detection based on floating car[D]. Beijing:Beijing Jiaotong University, 2008. [7] ZHENG Yu, ZHANG Huichu, YU Yong. Detecting collective anomalies from multiple spatio-temporal datasets across different domains[C]//Proceedings of the 23rd SIGSPATIAL International Conference on Advances in Geographic Information Systems. Seattle, Washington:ACM, 2015:2. [8] HONG Liang, ZHENG Yu, YUNG D, et al. Detecting urban black holes based on human mobility data[C]//Proceedings of the 23rd SIGSPATIAL International Conference on Advances in Geographic Information Systems. Seattle, Washington:ACM, 2015:35. [9] LI Zhongmou, XIONG Hui, LIU Yanchi, et al. Detecting Blackhole and Volcano Patterns in Directed Networks[C]//Proceedings of 2010 IEEE International Conference on Data Mining. Sydney, NSW, Australia:IEEE, 2010:294-303. [10] LI Zhongmou, XIONG Hui, LIU Yanchi. Mining blackhole and volcano patterns in directed graphs:a general approach[J]. Data Mining and Knowledge Discovery, 2012, 25(3):577-602. [11] ZHOU Xun, KHEZERLOU A V, LIU A, et al. A traffic flow approach to early detection of gathering events:comprehensive results[C]//Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. Burlingame, California:ACM, 2016:4. [12] PAN Bei, ZHENG Yu, WILKIE D, et al. Crowd sensing of traffic anomalies based on human mobility and social media[C]//Proceedings of the 21st ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. Orlando, Florida:ACM, 2013:344-353. [13] GABRIELLI L, RINZIVILLO S, RONZANO F, et al. From tweets to semantic trajectories:mining anomalous urban mobility patterns[M]//NIN J, VILLATORO D. Citizen in Sensor Networks. Cham:Springer, 2014(8313):26-35. [14] ALDHAHERI A, LEE J. Event detection on large social media using temporal analysis[C]//Proceedings of 2017 IEEE 7th Annual Computing and Communication Workshop and Conference. Las Vegas, NV:IEEE, 2017:1-6. [15] 徐程浩, 郭斌, 欧阳逸, 等. 基于社交媒体的事件感知与多模态事件脉络生成[J]. 计算机科学, 2017, 44(S1):33-36. XU Chenghao, GUO Bin, OUYANG Yi, et al. Event sensing and multimodal event vein generation leveraging social media[J]. Computer Science, 2017, 44(S1):33-36. [16] XU Lin, YUE Yang, LI Qingquan. Identifying urban traffic congestion pattern from historical floating car data[J]. Procedia-Social and Behavioral Sciences, 2013(96):2084-2095. [17] XU Zheng, ZHANG Hui, HU Chuanping, et al. Building knowledge base of urban emergency events based on crowdsourcing of social media[J]. Concurrency and Computation:Practice and Experience, 2016, 28(15):4038-4052. [18] LEE P, LAKSHMANAN L V S, MILIOS E. CAST:a context-aware story-teller for streaming social content[C]//Proceedings of the 23rd ACM International Conference on Conference on Information and Knowledge Management. Shanghai:ACM, 2014:789-798. [19] 王艳东, 李昊, 王腾, 等. 基于社交媒体的突发事件应急信息挖掘与分析[J]. 武汉大学学报(信息科学版), 2016, 41(3):290-297. WANG Yandong, LI Hao, WANG Teng, et al. The Mining and Analysis of Emergency Information in Sudden Events Based on Social Media[J]. Geomatics and Information Science of Wuhan University, 2016, 41(3):290-297. [20] NEILL D B. Expectation-based scan statistics for monitoring spatial time series data[J]. International Journal of Forecasting, 2009, 25(3):498-517. [21] LESKOVEC J, RAJARAMAN A, ULLMAN J D. Mining of massive datasets[M]. Cambridge:Cambridge University Press, 2014:8-9. [22] KREYSZIG E. Advanced engineering mathematics[M]. 4th ed. New York:Wiley, 1979. [23] Bethlehem J. Applied survey methods:A statistical perspective[M]. Hoboken, N.J.:Wiley, 2009. [24] BÖRSCH-SUPAN A, ELSNER D, FAβBENDEI H, et al. How to make internet surveys representative:A case study of a two-step weighting procedure[R]. Mannheim, Germany:Munich Center for the Economics of Aging (MEA) at the Max Planck Institute for Social Law and Social Policy, 2004. [25] BOONSTRA H J, Statistics Netherlands. A simulation study of repeated weighting estimation[R].[S.l.]:Statistics Netherlands, Research Department, Discussion Papers No.04003, 2004. [26] BETHLEHEM J. Applied survey methods-a statistical perspective[EB/OL]. http://www.applied-survey-methods.com/weight.html. |