[1] 张青年. 顾及密度差异的河系简化[J]. 测绘学报, 2006, 35(2):191-196. DOI:10.3321/j.issn:1001-1595.2006.02.018. ZHANG Qingnian. Generalization of drainage network with density differences[J]. Acta Geodaetica et Cartographica Sinica, 2006, 35(2):191-196. DOI:10.3321/j.issn:1001-1595.2006.02.018. [2] 艾廷华, 刘耀林, 黄亚锋. 河网汇水区域的层次化剖分与地图综合[J]. 测绘学报, 2007, 36(2):231-236, 243. DOI:10.3321/j.issn:1001-1595.2007.02.020. AI Tinghua, LIU Yaolin, HUANG Yafeng. The hierarchical watershed partitioning and generalization of river network[J]. Acta Geodaetica et Cartographica Sinica, 2007, 36(2):231-236, 243. DOI:10.3321/j.issn:1001-1595.2007.02.020. [3] 刘民士, 龙毅, 费立凡, 等. 顾及三维形态特征的河流曲线化简方法[J]. 武汉大学学报(信息科学版), 2018, 43(3):385-391. LIU Minshi, LONG Yi, FEI Lifan, et al. Line simplification of river considering three-dimensional shape characteristics[J]. Geomatics and Information Science of Wuhan University, 2018, 43(3):385-391. [4] 黄琦. 湖泊自动综合的研究与实现[D]. 郑州:信息工程大学, 2005. HUANG Qi. Research and implementation of automatic lake integration[D]. Zhengzhou:Information Engineering University, 2005. [5] 王桥, 毋河海. 地图图斑群自动综合的分形方法研究[J]. 武汉测绘科技大学学报, 1996, 21(1):59-63. WANG Qiao, WU Hehai. The research on fractal method of automatic generalization of map polygons[J]. Journal of Wuhan Technical University of Surveying and Mapping, 1996, 21(1):69-63. [6] 王家耀, 张天时. 制图综合[M]. 北京:星球地图出版社, 2016. WANG Jiayao, ZHANG Tianshi. Cartographic generalization[M]. Beijing:Planet Map Publishing House, 2016. [7] STEINIGER S. Enabling pattern-ware automated map generalization[D]. Zurich:Zurich University, 2007. [8] 武芳, 巩现勇, 杜佳威. 地图制图综合回顾与前望[J]. 测绘学报, 2017, 46(10):1645-1664. DOI:10.11947/j.AGCS.2017.20170287. WU Fang, GONG Xianyong, DU Jiawei. Overview of the research progress in automated map generalization[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10):1645-1664. DOI:10.11947/j.AGCS.2017.20170287. [9] ZHANG Xiang, STOTER J, AI Tinghua, et al. Automated evaluation of building alignments in generalized maps[J]. International Journal of Geographical Information Science, 2013, 27(8):1550-1571. DOI:10.1080/13658816.2012.758264. [10] DU Shihong, LUO Liqun, CAO Kai, et al. Extracting building patterns with multilevel graph partition and building grouping[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 122:81-96. DOI:10.1016/j.isprsjprs.2016.10.001. [11] 艾廷华, 郭仁忠. 基于格式塔识别原则挖掘空间分布模式[J]. 测绘学报, 2007, 36(3):302-308. DOI:10.3321/j.issn:1001-1595.2007.03.011. AI Tinghua, GUO Renzhong. Polygon cluster pattern mining based on Gestalt principles[J]. Acta Geodaetica et Cartographica Sinica, 2007, 36(3):302-308. DOI:10.3321/j.issn:1001-1595.2007.03.011. [12] 余莉, 甘淑, 袁希平, 等. 克服双重约束的面目标位置聚类方法[J]. 测绘学报, 2016, 45(10):1250-1259. DOI:10.11947/j.AGCS.2016.20150491. YU Li, GAN Shu, YUAN Xiping, et al. Position clustering for polygon object under dual-constrains[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(10):1250-1259. DOI:10.11947/j.AGCS.2016.20150491. [13] ZHANG Xiang, AI Tinghua, STOTER J, et al. Building pattern recognition in topographic data:examples on collinear and curvilinear alignments[J]. Geoinformatica, 2013, 17(1):1-33. DOI:10.1007/s10707-011-0146-3. [14] 巩现勇, 武芳. 城市建筑群网格模式的图论识别方法[J]. 测绘学报, 2014, 43(9):960-968. DOI:10.13485/j.cnki.11-2089.2014.0125. GONG Xianyong, WU Fang. The graph theory approach to grid pattern recognition in urban building groups[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(9):960-968. DOI:10.13485/j.cnki.11-2089.2014.0125. [15] 张秀红, 陈迪, 刘纪平, 等. 结构化居民地群的多层次识别方法[J]. 武汉大学学报(信息科学版), 2018, 43(8):1144-1151. ZHANG Xiuhong, CHEN Di, LIU Jiping, et al. A multilevel identification approach to structured building clusters[J]. Geomatics and Information Science of Wuhan University, 2018, 43(8):1144-1151. [16] BADER M, WEIBEL R. Detecting and resolving size and proximity conflicts in the generalization of polygonal maps[C]//Proceedings of the 18th International Cartographic Conference. Stockholm:[s.n.], 1997. [17] 巩现勇. 城市建筑群典型空间分布模式的识别方法研究[D]. 郑州:信息工程大学, 2014. GONG Xianyong. Research on typical map pattern recognition in urban building groups[D]. Zhengzhou:Information Engineering University, 2014. [18] YAN Haowen, WEIBEL R, YANG Bisheng. A multi-parameter approach to automated building grouping and generalization[J]. Geoinformatica, 2008, 12(1):73-89. DOI:10.1007/s10707-007-0020-5. [19] LI Zhilin, YAN Haowen, AI Tinghua, et al. Automated building generalization based on urban morphology and Gestalt theory[J]. International Journal of Geographical Information Science, 2004, 18(5):514-534. DOI:10.1080/13658810410001702021. [20] 帅赟. 基于Gestalt认知原则的城市建筑群分布模式识别方法研究[D]. 武汉:武汉大学, 2008. SHUAI Yun. Research on distribution pattern recognition method of urban building group based on Gestalt cognitive principle[D]. Wuhan:Wuhan University, 2008. [21] CHEN Lin. The topological approach to perceptual organization[J]. Visual Cognition, 2005, 12(4):553-637. DOI:10.1080/13506280444000256. [22] CHEN Lin. Topological structure in visual perception[J]. Science, 1982, 218(4573):699-700. DOI:10.1126/science.7134969. [23] 朱滢. 陈霖的拓扑性质知觉理论[J]. 心理科学, 2005, 28(5):1031-1034, 1030. DOI:10.3969/j.issn.1671-6981.2005.05.002. ZHU Ying. Chen Lin's theory of topological perception[J]. Psychological Science, 2005, 28(5):1031-1034, 1030. DOI:10.3969/j.issn.1671-6981.2005.05.002. [24] 吴亮, 谢忠, 叶梓. 街网约束下的城市居民地自动综合算法[J]. 地理与地理信息科学, 2009, 25(3):37-41. WU Liang, XIE Zhong, YE Zi. A building polygon generalization algorithm under the road constraint[J]. Geography and Geo-Information Science, 2009, 25(3):37-41. [25] 巩现勇. 顾及分布特征和道路网约束的居民地综合方法研究[D]. 郑州:战略支援部队信息工程大学, 2017. GONG Xianyong. Research on settlement generalization methods considering spatial pattern and road networks[D]. Zhengzhou:Information Engineering University, 2017. [26] AI Tinghua, VAN OOSTEROM P. Gap-tree extensions based on skeletons[M]//RICHARDSON D E, VAN OOSTEROM P. Advances in Spatial Data Handling. Berlin, Heidelberg:Springer, 2002. |