[1] 胡俊. 中国城市:模式与演进[M]. 北京:中国建筑工业出版社, 1995. HU Jun. Chinese cities:patterns and evolution[M]. Beijing:China Architecture & Building Press, 1995. [2] 刘可心, 王龙. 面向升级的城市规划发展思考[C]//规划60年:成就与挑战——2016中国城市规划年会论文集(区域规划与城市经济). 沈阳:中国城市规划年会, 2016. LIU Kexin, WANG Long. Thinking on urban planning and development oriented to upgrading[C]//Urban Planning of the Past 60 Years:Proceedings of the Annual National Planning Conference 2016:Regional Planning and City Economy. Shenyang:Urban Planning Society of China, 2016. [3] 王卫华, 王开泳. 北京城市功能区演变与优化调控[J]. 中国名城, 2014(6):32-37. WANG Weihua, WANG Kaiyong. The evolution and optimization control of function areas in Beijing[J]. China Ancient City, 2014(6):32-37. [4] PEI Tao, SOBOLEVSKY S, RATTI C, et al. A new insight into land use classification based on aggregated mobile phone data[J]. International Journal of Geographical Information Science, 2014, 28(9):1988-2007. [5] 宋雪涛, 蒲英霞, 刘大伟, 等. 利用行人轨迹挖掘城市区域功能属性[J]. 测绘学报, 2015, 44(S1):82-88. DOI:10.11947/j.AGCS.2015.F048. SONG Xuetao, PU Yingxia, LIU Dawei, et al. Mining urban functional areas using pedestrians' movement trajectories[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(S1):82-88. DOI:10.11947/j.AGCS.2015.F048. [6] TOOLE J L, ULM M, GONZÁLEZ M C, et al. Inferring land use from mobile phone activity[C]//Proceedings of the ACM SIGKDD International Workshop on Urban Computing. Beijing:ACM, 2012:1-8. [7] JIANG Shan, ALVES A, RODRIGUES F, et al. Mining point-of-interest data from social networks for urban land use classification and disaggregation[J]. Computers, Environment and Urban Systems, 2015, 53:36-46. [8] LIU Xingjian, LONG Ying. Automated identification and characterization of parcels with OpenStreetMap and points of interest[J]. Environment and Planning B:Urban Analytics and City Science, 2016, 43(2):341-360. [9] RODRIGUES F, PEREIRA F C, ALVES A O, et al. Automatic classification of points-of-interest for land-use analysis[C]//GEO Processing 2012:the Fourth International Conference on Advanced Geographic Information Systems, Applications, and Services. Valencia:IARIA, 2012:41-49. [10] TIAN Li, SHEN Tiyan. Evaluation of plan implementation in the transitional China:a case of Guangzhou city master plan[J]. Cities, 2011, 28(1):11-27. [11] LONG Ying, SHEN Zhenjiang. Geospatial analysis to support urban planning in Beijing[M]. Berlin:Springer, 2015. [12] 池娇, 焦利民, 董婷, 等. 基于POI数据的城市功能区定量识别及其可视化[J]. 测绘地理信息, 2016, 41(2):68-73. CHI Jiao, JIAO Limin, DONG Ting, et al. Quantitative identification and visualization of urban functional area based on POI data[J]. Journal of Geomatics, 2016, 41(2):68-73. [13] 邓悦. 基于多源兴趣点数据的城市功能区划分方法研究[D]. 北京:中国测绘科学研究院, 2018. DENG Yue. Research on urban function zone partition method based on multi-source interest point data[D]. Beijing:Chinese Academy of Surveying and Mapping, 2018. [14] CHEN Zhanlong, GONG Xi, XIE Zhong. An analysis of movement patterns between zones using taxi GPS data[J]. Transactions in GIS, 2017, 21(6):1341-1363. [15] LIU Xi, GONG Li, GONG Yongxi, et al. Revealing travel patterns and city structure with taxi trip data[J]. Journal of Transport Geography, 2015, 43:78-90. [16] LIU Xi, KANG Chaogui, GONG Li, et al. Incorporating spatial interaction patterns in classifying and understanding urban land use[J]. International Journal of Geographical Information Science, 2016, 30(2):334-350. [17] BANZHAF E, NETZBAND M. Monitoring urban land use changes with remote sensing techniques[M]//RICHTER M, WEILAND U. Applied Urban Ecology:A Global Framework. New York:John Wiley, 2011:18-32. [18] HU Shougeng, WANG Le. Automated urban land-use classification with remote sensing[J]. International Journal of Remote Sensing, 2013, 34(3):790-803. [19] LIU Jun, ZHOU Xiran, HUANG Junyi, et al. Semantic classification for hyperspectral image by integrating distance measurement and relevance vector machine[J]. Multimedia Systems, 2017, 23(1):95-104. [20] WEN Dawei, HUANG Xin, ZHANG Liangpei, et al. A novel automatic change detection method for urban high-resolution remotely sensed imagery based on multiindex scene representation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(1):609-625. [21] WU Chen, ZHANG Lefei, ZHANG Liangpei. A scene change detection framework for multi-temporal very high resolution remote sensing images[J]. Signal Processing, 2016, 124:184-197. [22] ZHANG Xiuyuan, DU Shihong. A linear Dirichlet mixture model for decomposing scenes:application to analyzing urban functional zonings[J]. Remote Sensing of Environment, 2015, 169:37-49. [23] ZHANG Xiuyuan, DU Shihong, WANG Yichen. Semantic classification of heterogeneous urban scenes using intrascene feature similarity and interscene semantic dependency[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(5):2005-2014. [24] LIU Xiaoping, HE Jialv, YAO Yao, et al. Classifying urban land use by integrating remote sensing and social media data[J]. International Journal of Geographical Information Science, 2017, 31(8):1675-1696. [25] TU Wei, CAO Jinzhou, YUE Yang, et al. Coupling mobile phone and social media data:a new approach to understanding urban functions and diurnal patterns[J]. International Journal of Geographical Information Science, 2017, 31(12):2331-2358. [26] YUAN Jing, ZHENG Yu, XIE Xing. Discovering regions of different functions in a city using human mobility and POIs[C]//Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Beijing:ACM, 2012:186-194. [27] SCHWENK H. Continuous space language models[J]. Computer Speech & Language, 2007, 21(3):492-518. [28] YAO Yao, LI Xia, LIU Xiaoping, et al. Sensing spatial distribution of urban land use by integrating points-of-interest and Google Word2Vec model[J]. International Journal of Geographical Information Science, 2017, 31(4):825-848. [29] 张铮, 王艳平, 薛桂香. 数字图像处理与机器视觉:Visual C++与Matlab实现[M]. 北京:人民邮电出版社, 2010. ZHANG Zheng, WANG Yanping, XUE Guixiang, et al. Digital image processing and machine vision:Visual C++ and Matlab implementation[M]. Beijing:Posts & Telecom Press, 2010. [30] SHEKHAR S, HUANG Yan. Discovering spatial co-location patterns:a summary of results[C]//Proceedings of the 7th International Symposium on Advances in Spatial and Temporal Databases. Redondo Beach:Springer, 2001. [31] FLOUVAT F, VAN SOC J F N, DESMIER E, et al. Domain-driven co-location mining[J]. Geoinformatica, 2015, 19(1):147-183. [32] YAMADA I, THILL J C. Local indicators of network-constrained clusters in spatial point patterns[J]. Geographical Analysis, 2007, 39(3):268-292. [33] THURSTAIN-GOODWIN M, UNWIN D. Defining and delineating the central areas of towns for statistical monitoring using continuous surface representations[J]. Transactions in GIS, 2010, 4(4):305-317. [34] YU Wenhao. Spatial co-location pattern mining for location-based services in road networks[J]. Expert Systems with Applications, 2016, 46:324-335. [35] HUANG Y, SHEKHAR S, XIONG H. Discovering colocation patterns from spatial data sets:a general approach[J]. IEEE Transactions on Knowledge and Data Engineering, 2004, 16(12):1472-1485. [36] 谷岩岩, 焦利民, 董婷, 等. 基于多源数据的城市功能区识别及相互作用分析[J]. 武汉大学学报(信息科学版), 2018, 43(7):1113-1121. GU Yanyan, JAO Limin, DONG Ting, et al. Spatial distribution and interaction analysis of urban functional areas based on multi-source data[J]. Geomatics and Information Science of Wuhan University, 2018, 43(7):1113-1121. [37] 李娅, 刘亚岚, 任玉环, 等. 城市功能区语义信息挖掘与遥感分类[J]. 中国科学院大学学报, 2019, 36(1):56-63. LI Ya, LIU Yalan, REN Yuhuan, et al. Semantic information mining and remote sensing classification of urban functional areas[J]. Journal of University of Chinese Academy of Sciences, 2019, 36(1):56-63. [38] BLEI D M, NG A Y, JORDAN M I. Latent Dirichlet allocation[J]. Journal of Machine Learning Research, 2012, 3(4-5):993-1022. [39] MIKOLOV T, SUTSKEVER I, CHEN Kai, et al. Distributed representations of words and phrases and their compositionality[C]//Proceedings of the 26th International Conference on Neural Information Processing Systems:vol 2. Nevada:ACM, 2013:3111-3119. |