[1] CHEN Qiujie, SHEN Yunzhong, FRANCIS O, et al. Tongji-Grace02s and Tongji-Grace02k:high-precision static GRACE-only global earth's gravity field models derived by refined data processing strategies[J]. Journal of Geophysical Research:Solid Earth, 2018, 123(7):6111-6137. DOI:10.1029/2018JB015641. [2] RIEGGER J, GÜNTNER A. Time variation in hydrology and gravity[J]. Earth, Moon, and Planets, 2004, 94(1-2):41-55. DOI:10.1007/s11038-005-1831-8. [3] SANDWELL D T,MULLER R D,SMITH W H F,et al. New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure[J].Science, 2014, 346(6205):65-67. DOI:10.1126/science.1258213. [4] PAVLIS N K, HOLMES S A, KENYON S C, et al. The development and evaluation of the earth gravitational model 2008(EGM2008)[J]. Journal of Geophysical Research:Solid Earth, 2012, 117(B4):B04406. DOI:10.1029/2011JB008916. [5] 梁伟, 徐新禹, 李建成, 等. 联合EGM2008模型重力异常和GOCE观测数据构建超高阶地球重力场模型SGG-UGM-1[J]. 测绘学报, 2018, 47(4):425-434. DOI:10.11947/j.AGCS.2018.20170269. LIANG Wei, XU Xinyu, LI Jiancheng, et al. The determination of an ultra-high gravity field model SGG-UGM-1 by combining EGM 2008 gravity anomaly and GOCE observation data[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(4):425-434. DOI:10.11947/j.AGCS.2018.20170269. [6] HIRT C, REXER M, CLAESSENS S, et al. The relation between degree-2160 spectral models of Earth's gravitational and topographic potential:a guide on global correlation measures and their dependency on approximation effects[J]. Journal of Geodesy, 2017, 91(10):1179-1205. [7] COOPER R I B. Navigational aspects of gravity determinations[J]. The Journal of Navigation, 1952, 5(3):271-279. DOI:10.1017/S037346330004474X. [8] GERBER M A. Gravity gradiometry:something new in inertial navigation[J]. Astronautics and Aeronautics, 1978, 16:18-26. [9] METZGER E H, JIRCITANO A. Inertial navigation performance improvement using gravity gradient matching techniques[J]. Journal of Spacecraft and Rockets, 1976, 13(6):323-324. [10] AFFLECK C A, JIRCITANO A. Passive gravity gradiometer navigation system[C]//Proceedings of IEEE Symposium on Position Location and Navigation. Las Vegas:IEEE, 1990:60-66. [11] GLEASON D M. Passive airborne navigation and terrain avoidance using gravity gradiometry[J]. Journal of Guidance, Control, and Dynamics, 1995, 18(6):1450-1458. [12] JEKELI C. Airborne gradiometry error analysis[J]. Surveys in Geophysics, 2006, 27(2):257-275. [13] JEKELI C. Precision free-inertial navigation with gravity compensation by an onboard gradiometer[J]. Journal of Guidance, Control, and Dynamics, 2006, 29(3):704-713. [14] KWON J H, JEKELI C. Gravity requirements for compensation of ultra-precise inertial navigation[J]. The Journal of Navigation, 2005, 58(3):479-492. DOI:10.1017/S0373463305003395. [15] 彭富清, 海洋重力辅助导航方法及应用[D]. 郑州:信息工程大学, 2009. PENG Fuqing. Marine gravity aided navigation methods with their applications[D]. Zhengzhou:Information Engineering University, 2009. [16] 李姗姗. 水下重力辅助惯性导航的理论与方法研究[D]. 郑州:信息工程大学, 2010. LI Shanshan. Research on the theory and method of underwater gravity-aided inertial navigation[D]. Zhengzhou:Information Engineering University, 2010. [17] YANG Yuanxi, XU Tianhe, XUE Shuqiang. Progresses and prospects of marine geodetic datum and marine navigation in China[J]. Journal of Geodesy and Geoinformation Science, 2018, 1(1):16-24. DOI:10.11947/j.JGGS.2018.0102. [18] SACERDOTE F, SANSO F. A contribution to the analysis of the altimetry-gravimetry problem[J].Bulletin of Geodesy. 1983, 57(1):257-272.DOI:10.1007/bf02520932. [19] YU Jinhai, ZHAO Dongming. The gravitational gradient tensor's invariants and the related boundary conditions[J]. Science China Earth Sciences, 2010, 53(5):781-790. [20] YU Jinhai, WAN Xiaoyun. Recovery of the gravity field from GOCE data by using the invariants of gradient tensor[J]. Science China Earth Sciences, 2013, 56(7):1193-1199. DOI:10.1007/s11430-012-4427-y. [21] 郭大钧. 非线性泛函分析[M]. 济南:山东科学技术出版社, 1985. GUO Dajun. Nonlinear functional analysis[M]. Ji'nan:Shandong Science and Technology Press, 1985. [22] HWANG C, CHEN S K. Fully normalized spherical cap harmonics:application to the analysis of sea-level data from TOPEX/Poseidon and ERS-1[J]. Geophysical Journal International, 1997, 129(2):450-460. [23] LI Jiancheng. Spherical cap harmonic expansion for local gravity represention[J]. Manuscripta Geodaetica, 1995, 20:265-277. [24] HAINES G V. Computer programs for spherical cap harmonic analysis of potential and general fields[J]. Computers & Geosciences, 1988, 14(4):413-447. [25] MAROTTA A M, BARZAGHI R. A new methodology to compute the gravitational contribution of a spherical tesseroid based on the analytical solution of a sector of a spherical zonal band[J]. Journal of Geodesy, 2017, 91(10):1207-1224. [26] OPHAUG V, GERLACH C. On the equivalence of spherical splines with least-squares collocation and Stokes's formula for regional geoid computation[J]. Journal of Geodesy, 2017, 91(11):1367-1382. [27] QU Qingliang, CHANG Xiaotao, YU Shengwen, et al. Calibration for GOCE gradiometer data based on the prior gravity models[J]. Journal of Geodesy and Geoinformation Science, 2019, 2(4):21-30. DOI:10.11947/j.JGGS.2019.0403. [28] GRIGGS C E, MOODY M V, NORTON R S, et al. Sensitive superconducting gravity gradiometer constructed with levitated test masses[J]. Physical Review Applied. 2017, 8(6):0640241-0640243. DOI:10.1103/physRevapplied.8.064024. |