[1] 叶庆华, 程维明, 赵永利, 等. 青藏高原冰川变化遥感监测研究综述[J]. 地球信息科学学报, 2016, 18(7):920-930. YE Qinghua, CHENG Weiming, ZHAO Yongli, et al. A review on the research of glacier changes on the Tibetan Plateau by remote sensing technologies[J]. Journal of Geo-Information Science, 2016, 18(7):920-930. [2] YAO Tandong, THOMPSON L, YANG Wei, et al. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings[J]. Nature Climate Change, 2012, 2(9):663-667. [3] BOLCH T, KULKARNI A, KAAB A, et al. The state and fate of Himalayan glaciers[J]. Science, 2012, 336(6079):310-314. [4] LI G, LIN H, YE Q, et al. Acceleration of glacier mass loss after 2013 at the Mt. Everest(Qomolangma)[J]. Journal of Geodesy and Geoinformation Science, 2020, 3(4):60-69. [5] TAPLEY B D, WATKINS M M, FLECHTNER F, et al. Contributions of GRACE to understanding climate change[J]. Nature Climate Change, 2019, 9(5):358-369. [6] CIRACÌ E, VELICOGNA I, SWENSON S. Continuity of the mass loss of the world's glaciers and ice caps from the GRACE and GRACE follow-on missions[J]. Geophysical Research Letters, 2020, 47(9):e2019GL086926. [7] BEVERIDGE A K, HARIG C, SIMONS F J. The changing mass of glaciers on the Tibetan Plateau, 2002-2016, using time-variable gravity from the GRACE satellite mission[J]. Journal of Geodetic Science, 2018, 8(1):83-97. [8] 史红岭, 陆洋, 高春春, 等. 基于GRACE数据估计近年喜马拉雅冰川质量变化[J]. 大地测量与地球动力学, 2015, 35(4):636-639, 644. SHI Hongling, LU Yang, GAO Chunchun, et al. Recent glacier mass changes in the Himalayas from GRACE RL05 data[J]. Journal of Geodesy and Geodynamics, 2015, 35(4):636-639, 644. [9] 冀琴, 董军, 刘睿, 等. 1990-2015年喜马拉雅山冰川变化的遥感监测及动因分析[J]. 地理科学, 2020, 40(3):486-496. JI Qin, DONG Jun, LIU Rui, et al. Glacier changes in response to climate change in the Himalayas in 1990-2015[J]. Scientia Geographica Sinica, 2020, 40(3):486-496. [10] REN Shaoting, MENENTI M, JIA Li, et al. Glacier mass balance in the nyainqentanglha mountains between 2000 and 2017 retrieved from ZiYuan-3 stereo images and the SRTM DEM[J]. Remote Sensing, 2020, 12(5):864-898. [11] 吴坤鹏, 刘时银, 郭万钦. 1980-2015年南迦巴瓦峰地区冰川变化及其对气候变化的响应[J]. 冰川冻土, 2020, 42(4):1115-1125. WU Kunpeng, LIU Shiyin, GUO Wanqin. Glacier variation and its response to climate change in the Mount Namjagbarwa from 1980 to 2015[J]. Journal of Glaciology and Geocryology, 2020, 42(4):1115-1125. [12] JOODAKI G, WAHR J, SWENSON S. Estimating the human contribution to groundwater depletion in the Middle East, from GRACE data, land surface models, and well observations[J]. Water Resources Research, 2014, 50(3):2679-2692. [13] CHENG Minkang, RIES J C, TAPLEY B D. Variations of the Earth's figure axis from satellite laser ranging and GRACE[J]. Journal of Geophysical Research:Solid Earth, 2011, 116(B1):B01409. [14] LOOMIS B D, RACHLIN K E, WIESE D N, et al. Replacing GRACE/GRACE-FO with satellite laser ranging:impacts on Antarctic ice sheet mass change[J]. Geophysical Research Letters, 2020, 47(3):e2019GL085488. [15] 李琼. 地表物质迁移的时变重力场反演方法及其应用研究[D]. 武汉:武汉大学, 2014. LI Qiong. Earth's surface mass transport recovered from temporal gravity field and its applications[D]. Wuhan:Wuhan University, 2014. [16] 詹金刚, 王勇, 郝晓光. GRACE时变重力位系数误差的改进去相关算法[J]. 测绘学报, 2011, 40(4):442-446, 453. ZHAN Jingang, WANG Yong, HAO Xiaoguang. Improved method for removal of correlated errors in GRACE data[J]. Acta Geodaetica et Cartographica Sinica, 2011, 40(4):442-446, 453. [17] STUHNE G R, PELTIER W R. Reconciling the ICE-6G_C reconstruction of glacial chronology with ice sheet dynamics:the cases of Greenland and Antarctica[J]. Journal of Geophysical Research:Earth Surface, 2015, 120(9):1841-1865. [18] YI Shuang, SUN Wenke. Evaluation of glacier changes in high-mountain Asia based on 10 year GRACE RL05 models[J]. Journal of Geophysical Research:Solid Earth, 2014, 119(3):2504-2517. [19] RODELL M, HOUSER P R, JAMBOR U, et al. The global land data assimilation system[J]. Bulletin of the American Meteorological Society, 2004, 85(3):381-394. [20] MOHAMMED A A, PAVLOVSKII I, CEY E E, et al. Effects of preferential flow on snowmelt partitioning and groundwater recharge in frozen soils[J]. Hydrology and Earth System Sciences, 2019, 23(12):5017-5031. [21] BJORDAL J, STORELVMO T, ALTERSKJAER K, et al. Equilibrium climate sensitivity above 5° C plausible due to state-dependent cloud feedback[J]. Nature Geoscience, 2020, 13(11):718-721. [22] 陈安安. 基于多源DEM的近50年高亚洲地区冰川物质研究[D]. 北京:中国科学院大学, 2017. CHEN Anan. Glacier mass budgets in the High Mountain Asia based on multisource DEMs over past 50 Years[D]. Beijing:University of Chinese Academy of Sciences, 2017. [23] 李武东, 郭金运, 常晓涛, 等. 利用GRACE重力卫星反演2003-2013年新疆天山地区陆地水储量时空变化[J]. 武汉大学学报(信息科学版), 2017, 42(7):1021-1026. LI Wudong, GUO Jinyun, CHANG Xiaotao, et al. Terrestrial water storage changes in the Tianshan mountains of Xinjiang measured by GRACE during 2003-2013[J]. Geomatics and Information Science of Wuhan University, 2017, 42(7):1021-1026. [24] 朱传东, 陆洋, 史红岭, 等. 高亚洲冰川质量变化趋势的卫星重力探测[J]. 地球物理学报, 2015, 58(3):793-801. ZHU Chuandong, LU Yang, SHI Hongling, et al. Trends of glacial mass changes in High Asia from satellite gravity observations[J]. Chinese Journal of Geophysics, 2015, 58(3):793-801. [25] 施雅风,刘时银.中国冰川对21世纪全球变暖响应的预估[J]. 科学通报, 2000, 45(4):434-438. SHI Yafeng, LIU Shiyin. Prediction of the response of Chinese glaciers to global warming in the 21st century[J]. Chinese Science Bulletin, 2000, 45(4):434-438. [26] 王旭, 周爱国, SIEGERT Florian, 等. 念青唐古拉山西段冰川1977-2010年时空变化[J]. 地球科学, 2012, 37(5):1082-1092. WANG Xu, ZHOU Aiguo, FLORIAN S, et al. Glacier temporal-spatial change characteristics in western nyainqentanglha range, Tibetan Plateau 1977-2010[J]. Earth Science, 2012, 37(5):1082-1092. [27] 相龙伟, 汪汉胜, 贾路路. GRACE监测青藏高原及邻区陆地水储量变化结果的可变性[J]. 大地测量与地球动力学, 2017, 37(3):311-318. XIANG Longwei, WANG Hansheng, JIA Lulu. The variability of terrestrial water storage changes in the Tibetan Plateau and adjacent areas retrieved by GRACE data[J]. Journal of Geodesy and Geodynamics, 2017, 37(3):311-318. |