[1] 王超. 光纤陀螺随机漂移的建模、分析和补偿[D].合肥:中国科学技术大学,2015. WANG Chao. Research on modelling, analysis and compensation of fiber optic gyroscope random drift[D]. Hefei:University of Science and Technology of China, 2015. [2] HUANG Lei. Auto regressive moving average (ARMA) modeling method for gyro random noise using a robust Kalman filter[J]. Sensors, 2015, 15(10):25277-25286. [3] CHEN Xiyuan. Modeling random gyro drift by time series neural networks and by traditional method[C]//Proceedings of 2003 International Conference on Neural Networks and Signal Processing, Nanjing:IEEE, 2003,1:810-813. [4] 朱奎宝, 张春熹, 宋凝芳. 光纤陀螺随机漂移模型[J]. 北京航空航天大学学报, 2006, 32(11):1354-1357. ZHU Kuibao, ZHANG Chunxi, SONG Ningfang. Modeling and identification of random drift for FOG[J]. Journal of Beijing University of Aeronautics and Astronautics, 2006, 32(11):1354-1357. [5] 唐晓红, 赵鲁阳, 李鲁明, 等. 改进的MEMS陀螺随机噪声自适应滤波算法[J]. 传感器与微系统, 2018, 37(10):133-136. TANG Xiaohong, ZHAO Luyang, LI Luming. Modified adaptive filtering algorithm for MEMS gyroscope random noise[J]. Transducer and Microsystem Technologies, 2018,37(10):133-136. [6] 白俊卿, 张科, 卫育新. 光纤陀螺随机漂移建模与分析[J]. 中国惯性技术学报, 2012, 20(5):621-624. BAI Junqing, ZHANG Ke, WEI Yuxin. Modeling and analysis of fiber optic gyroscope random drifts[J]. Journal of Chinese Inertial Technology, 2012, 20(5):621-624. [7] 傅军, 韩洪祥. 改进的MEMS陀螺随机噪声自适应Kalman实时滤波方法[J]. 光子学报, 2019, 48(12):183-191. FU Jun, HAN Hongxiang. Modified adaptive Real-time filtering algorithm for MEMS gyroscope random noise[J]. Acta Photonica Sinica. 2019,48(12):183-191. [8] 吴富梅,杨元喜. 基于高阶AR模型的陀螺随机漂移模型[J]. 测绘学报, 2007, 36(4):389-394. WU Fumei, YANG Yuanxi. Gyroscope random drift model based on the higher-order AR model[J]. Acta Geodaetica et Cartographica Sinica, 2007, 36(4):389-394. [9] 李家垒, 许化龙, 何婧. 光纤陀螺随机漂移的实时滤波方法研究[J]. 宇航学报, 2010, 31(12):2717-2721. LI Jialei, XU Hualong, HE Jing. Real-time filtering methods of random drift of fiber optic gyroscope[J]. Journal of Astronautics, 2010, 31(12):2717-2721. [10] 曾庆化, 黄磊, 刘建业, 等. 基于ARMA模型的光纤陀螺随机噪声滤波方法[J]. 中国惯性技术学报, 2015, 23(1):120-124. ZENG Qinghua, HUANG Lei, LIU Jianye, et al. Real-time filtering methods of FOG random noise based on ARMA model[J]. Journal of Chinese Inertial Technology, 2015,23(1):120-124. [11] SUN Jin, XU Xiaosu, LIU Yiting. et al. FOG random drift signal denoising based on the improved AR model and modified Sage-Husaadaptive Kalman filter[J]. Sensors, 2016, 16(7), 1073-1091. [12] GAO Weiwei, FANG Dan, WANG Hongyun, et al. DAVAR method for random noise signal process of FOG based on optimal window.//Proceedings of 2019 AIP Conference. Chongqing:AIP, 2019, 2122(1):20007-20015. [13] 王峥, 李建成.航空矢量重力测量中光纤陀螺随机漂移误差实时补偿方法[J].测绘学报, 2017, 46(2):144-150. WANG Zheng, LI Jiancheng. Research on the Real-time compensation of the fiber optic gyroscope random drift in airborne vector gravimetry[J]. Acta Geodaetica et CartographicaSinica, 2017, 46(2):144-150. [14] 隋立芬, 黄贤源, 王冰. 处理有色噪声的现代时间序列分析法[J]. 测绘科学技术学报, 2013, 30(5):443-447. SUI Lifen, HUANG Xianyuan, WANG Bing. Methods of processing colored noises based on modern time series analysis[J]. Journal of Geomatics Science and Technology, 2013, 30(5):443-447. [15] HUANG Yulong, ZHANG Yonggang, WU Zhemin, et al. A novel adaptive Kalman filter with inaccurate process and measurement noise covariance matrices[J]. IEEE Transactions on Automatic Control, 2017, 63(2):594-601. [16] MEHRA R, Approaches to adaptive filtering[J], IEEE Transactions on Automatic Control, 1972,5(17):693-698. [17] KIM D, M'CLOSKEY R T. Spectral analysis of vibratory gyro noise[J]. Sensors, IEEE, 2013, 13(11):4361-4374. [18] 王可东, 武雨霞. 一种MEMS陀螺随机漂移的高精度建模方法[J]. 北京航空航天大学学报, 2016, 42(8):1584-1592. WANG Kedong, WU Yuxia. An accurate modeling method for random drift of MEMS Gyro[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(8):1584-1592. [19] ZHENG Zhiming, LIU Jianye, LAI Jizhou, et al. Filtering technique on FOG random noise and its application[J]. Journal of Data Acquisition & Processing, 2009, 24(5):671-675. [20] POLLOCK D S G. Handbook of time series analysis, signal processing, and dynamics[M]. London:Academic Press, 1999. [21] BOX G E P, JENKINS G M. Time series analysis:forecasting and control[M]. San Francisco:Holden-day Press, 1970. [22] DURBIN J, WATSON G S. Testing for serial correlation in least squares regression III[J].Biometrika, 1971, 58(1):1-19. [23] 熊雪,郭敏华,李伟杰,等. 基于有色噪声的改进卡尔曼滤波方法[J]. 中国惯性技术学报, 2017, 25(1):33-36. XIONG Xue, GUO Minhua, LI Weijie, et al. Improved Kalman filtering method for MIMU with colored noises[J]. Journal of Chinese Inertial Technology, 2017, 25(1):33-36. [24] GAO Zhe. Kalman filters for continuous-time fractional-order systems involving fractional-order colored noises using Tustin generating function[J]. International Journal of Control, Automation and Systems, 2018, 3(16), 1049-1059. [25] HARVEY A C. Forecasting, structural time series models and the Kalman filter[M]. Cambridge:Cambridge University Press, 1990. |