[1] 白光润. 地理学的哲学贫困[J]. 地理学报, 1995, 50(3):279-287. BAI Guangrun. The philosophical predicament in the development of geography[J]. Acta Geographica Sinica, 1995, 50(3):279-287. [2] HARTSHORNE R. The nature of geography:a critical survey of current thought in the light of the past[J]. Annals of the Association of American Geographers, 1939, 29(3):173. [3] KEDRON P, HOLLER J. Replication and the search for the laws in the geographic sciences[J]. Annals of GIS, 2022, 28(1):45-56. [4] BRUNSDON C. Quantitative methods Ⅰ:reproducible research and quantitative geography[J]. Progress in Human Geography, 2016, 40(5):687-696. [5] BRUNSDON C. Quantitative methods Ⅱ:issues of inference in quantitative human geography[J]. Progress in Human Geography, 2017, 41(4):512-523. [6] SUI D, KEDRON P. Reproducibility and replicability in the context of the contested identities of geography[J]. Annals of the American Association of Geographers, 2021, 111(5):1275-1283. [7] ZHU Axing, LU Guonian, LIU Jing, et al. Spatial prediction based on Third Law of Geography[J]. Annals of GIS, 2018, 24(4):225-240. [8] GOODCHILD M F. GIScience, geography, form, and process[J]. Annals of the Association of American Geographers, 2004, 94(4):709-714. [9] 叶超, 蔡运龙. 地理学方法论变革的案例剖析:重新审视《地理学中的例外论》之争[J]. 地理学报, 2009, 64(9):1134-1142. YE Chao, CAI Yunlong. re-evaluating schaefer and his criticizing on exceptionalism in geography:a case study on the innovation of methodology[J]. Acta Geographica Sinica, 2009, 64(9):1134-1142. [10] TAYLOR P J, JOHNSTON R J. Geographic information systems and geography[M]//Ground truth:the social implications of geographic information systems. New York:Guilford, 1995:51-67. [11] MATHERON G. Principles of geostatistics[J]. Economic Geology, 1963, 58(8):1246-1266. [12] FOTHERINGHAM A S, BRUNSDON C, CHARLTON M. Geographically weighted regression:the analysis of spatially varying relationships[M]. Hoboken:Wiley, 2002. [13] GOODCHILD M F. The validity and usefulness of laws in geographic information science and geography[J]. Annals of the Association of American Geographers, 2004, 94(2):300-303. [14] O'SULLIVAN D, MANSON S M. Do physicists have geography envy? and what can geographers learn from it?[J]. Annals of the Association of American Geographers, 2015, 105(4):704-722. [15] WOLF L J, FOX S, HARRIS R, et al. Quantitative geography Ⅲ:future challenges and challenging futures[J]. Progress in Human Geography, 2021, 45(3):596-608. [16] OPENSHAW S. The modifiable areal unit problem[M]. Norwick:Geo Books, 1983. [17] KWAN M P. The uncertain geographic context problem[J]. Annals of the Association of American Geographers, 2012, 102(5):958-968. [18] GOODCHILD M F, LI Wenwen. Replication across space and time must be weak in the social and environmental sciences[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(35):e2015759118. [19] 高松. 地理空间人工智能的近期研究总结与思考[J]. 武汉大学学报(信息科学版), 2020, 45(12):1865-1874. GAO Song. A review of recent researches and reflections on geospatial artificial intelligence[J]. Geomatics and Information Science of Wuhan University, 2020, 45(12):1865-1874. [20] 张永生, 张振超, 童晓冲, 等. 地理空间智能研究进展和面临的若干挑战[J]. 测绘学报, 2021, 50(9):1137-1146. ZHANG Yongsheng, ZHANG Zhenchao, TONG Xiaochong, et al. Progress and challenges of geospatial artificial intelligence[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(9):1137-1146. [21] 陈军, 刘万增, 武昊, 等. 智能化测绘的基本问题与发展方向[J]. 测绘学报, 2021, 50(8):995-1005. CHEN Jun, LIU Wanzeng, WU Hao, et al. Smart surveying and mapping:fundamental issues and research agenda[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(8):995-1005. [22] DUQUE J C, RAMOS R, SURIÑACH J. Supervised regionalization methods:a survey[J]. International Regional Science Review, 2007, 30(3):195-220. [23] TONG Daoqin, MURRAY A T. Spatial optimization in geography[J]. Annals of the Association of American Geographers, 2012, 102(6):1290-1309. [24] LIU Yu. Core or edge? Revisiting GIScience from the geography-discipline perspective[J]. Science China Earth Sciences, 2022, 65(2):387-390. [25] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas:IEEE, 2016:770-778. [26] SILVER D, HUANG A, MADDISON C J, et al. Mastering the game of Go with deep neural networks and tree search[J]. Nature, 2016, 529:484-489. [27] BROWN T B, MANN B, RYDER N, et al. Language models are few-shot learners[C]//Proceedings of the 34th Conference on Neural Information Processing Systems.[S.l.]:CCFA, 2020. [28] FODOR J A, PYLYSHYN Z W. Connectionism and cognitive architecture:a critical analysis[J]. Cognition, 1988, 28(1/2):3-71. [29] KARNIADAKIS G E, KEVREKIDIS I G, LU L, et al. Physics-informed machine learning[J]. Nature Reviews Physics, 2021, 3(6):422-440. [30] GRAVES A, WAYNE G, REYNOLDS M, et al. Hybrid computing using a neural network with dynamic external memory[J]. Nature, 2016, 538:471-476. [31] REICHSTEIN M, CAMPS-VALLS G, STEVENS B, et al. Deep learning and process understanding for data-driven Earth system science[J]. Nature, 2019, 566:195-204. |