[1] 张勤, 黄观文, 杨成生. 地质灾害监测预警中的精密空间对地观测技术[J]. 测绘学报, 2017, 46(10): 1300-1307. DOI: 10.11947/j.AGCS.2017.20170453. ZHANG Qin, HUANG Guanwen, YANG Chengsheng. Precision space observation technique for geological hazard monitoring and early warning[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10): 1300-1307. DOI: 10.11947/j.AGCS.2017.20170453. [2] 许强, 朱星, 李为乐, 等. “天-空-地”协同滑坡监测技术进展[J]. 测绘学报,2022,51(7):1416-1436. DOI: 10.11947/j.AGCS.2022.20220320. XU Qiang, ZHU Xing, LI Weile, et al. Technical progress of space-air-ground collaborative monitoring of landslide[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1416-1436. DOI: 10.11947/j.AGCS.2022.20220320. [3] ZHOU Lü, ZHAO Yizhan, ZHU Zilin, et al. Spatial and temporal evolution of surface subsidence in Tianjin from 2015 to 2020 based on SBAS-InSAR technology[J]. Journal of Geodesy and Geoinformation Science, 2022, 5(1): 60-72. DOI: 10.11947/j.JGGS.2022.0107. [4] 尹晖. 时空变形分析与预报的理论和方法[M]. 北京: 测绘出版社, 2002. YIN Hui. Theory and method of spatio-temporal deformation analysis and prediction[M]. Beijing: Surveying and Mapping Press, 2002. [5] 王建民, 张锦, 邓增兵, 等. 时空Kriging插值在边坡变形监测中的应用[J]. 煤炭学报, 2014, 39(5): 874-879. WANG Jianmin, ZHANG Jin, DENG Zengbing, et al. Slope deformation analyses with space-time Kriging interpolation method[J]. Journal of China Coal Society, 2014, 39(5): 874-879. [6] 王建民. 矿山边坡变形监测数据的高斯过程智能分析与预测[D]. 太原: 太原理工大学, 2016. WANG Jianmin. Intelligent analysis and prediction of mine slope deformation monitoring data based on Gaussian process[D]. Taiyuan:Taiyuan University of Technology, 2016. [7] 张可能, 胡达, 何杰, 等. 基于Kriging时空统一模型的隧道动态施工位移预测[J]. 中南大学学报(自然科学版), 2017, 48(12): 3328-3334. ZHANG Keneng, HU Da, HE Jie, et al. Tunnel construction of dynamic displacement prediction based on unified space-time Kriging model[J]. Journal of Central South University (Science and Technology), 2017, 48(12): 3328-3334. [8] 李广春, 戴吾蛟, 杨国祥, 等. 时空自回归模型在大坝变形分析中的应用[J]. 武汉大学学报(信息科学版), 2015, 40(7): 877-881. LI Guangchun, DAI Wujiao, YANG Guoxiang, et al. Application of space-time auto-regressive model in dam deformation analysis[J]. Geomatics and Information Science of Wuhan University, 2015, 40(7): 877-881. [9] 杨志佳, 戴吾蛟, 陈必焰, 等. 克里金时空自回归模型在变形建模中的应用[J]. 测绘科学, 2019, 44(7): 40-45. YANG Zhijia, DAI Wujiao, CHEN Biyan, et al. The application of Kriging's space-time auto-regressive model in deformation modeling[J]. Science of Surveying and Mapping, 2019, 44(7): 40-45. [10] 孙志鹏, 郭玉平. 基于时空自回归模型的大型桥梁变形监测分析与预报[J]. 全球定位系统, 2015, 40(6): 83-85. SUN Zhipeng, GUO Yuping. Large-scale bridge deformation monitoring analysis and forecasting based on space-time auto-regressive model[J]. GNSS World of China, 2015, 40(6): 83-85. [11] 柳新强, 王涛. 时空序列模型在地下管线沉降监测中的应用[J]. 北京测绘, 2018, 32(7): 809-813. LIU Xinqiang, WANG Tao. Application of space-time series model in subsidence monitoring of underground pipeline[J]. Beijing Surveying and Mapping, 2018, 32(7): 809-813. [12] 柳新强, 王涛, 胡泊. 时空序列模型在沉降监测中的应用[J]. 测绘与空间地理信息, 2019, 42(2): 86-89, 93. LIU Xinqiang, WANG Tao, HU Bo. Application of space-time series model in subsidence monitoring[J]. Geomatics & Spatial Information Technology, 2019, 42(2): 86-89, 93. [13] YANG Zhijia, DAI Wujiao, SANTERRE R, et al. A spatiotemporal deformation modelling method based on geographically and temporally weighted regression[J]. Mathematical Problems in Engineering, 2019: 4352396. [14] YANG Zhijia, DAI Wujiao, YU Wenkun, et al. Mixed geographically and temporally weighted regression for spatio-temporal deformation modelling[J]. Survey Review, 2022, 54(385): 290-300. DOI: 10.1080/00396265.2021.1935578. [15] ZHUANG Lili, CRESSIE N. Bayesian hierarchical statistical SIRS models[J]. Statistical Methods & Applications, 2014, 23(4): 601-646. [16] NGUYEN H, KATZFUSS M, CRESSIE N, et al. Spatio-temporal data fusion for very large remote sensing datasets[J]. Technometrics, 2014, 56(2): 174-185. [17] ZAMMIT-MANGION A, CRESSIE N, GANESAN A L, et al. Spatio-temporal bivariate statistical models for atmospheric trace-gas inversion[J]. Chemometrics and Intelligent Laboratory Systems, 2015, 149: 227-241. [18] ZHANG Bohai, CRESSIE N. Bayesian inference of spatio-temporal changes of Arctic sea ice[J]. Bayesian Analysis, 2020, 15(2): 605-631. [19] HUANG H C, CRESSIE N. Spatio-temporal prediction of snow water equivalent using the Kalman filter[J]. Computational Statistics & Data Analysis, 1996, 22(2): 159-175. [20] MARDIA K V, GOODALL C, REDFERN E J, et al. The Kriged Kalman filter[J]. Test, 1998, 7(2): 217-282. [21] WIKLE C K, CRESSIE N. A dimension-reduced approach to space-time Kalman filtering[J]. Biometrika, 1999, 86(4): 815-829. [22] CRESSIE N, SHI Tao, KANG E L. Fixed rank filtering for spatio-temporal data[J]. Journal of Computational and Graphical Statistics, 2010, 19(3): 724-745. [23] KANG E L, CRESSIE N, SHI Tao. Using temporal variability to improve spatial mapping with application to satellite data[J]. Canadian Journal of Statistics, 2010, 38(2): 271-289. [24] LIU Ning, DAI Wujiao, SANTERRE R, et al. A MATLAB-based Kriged Kalman filter software for interpolating missing data in GNSS coordinate time series[J]. GPS Solutions, 2018, 22(1): 25. [25] LIU Ning, DAI Wujiao, SANTERRE R, et al. High spatio-temporal resolution deformation time series with the fusion of InSAR and GNSS data using spatio-temporal random effect model[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(1): 364-380. [26] DAI Wujiao, LIU Ning, SANTERRE R, et al. Dam deformation monitoring data analysis using space-time Kalman filter[J]. ISPRS International Journal of Geo-Information,2016, 5(12):236. [27] 刘宁, 戴吾蛟, 刘斌. 一种抗差的形变数据插补方法[J]. 测绘科学, 2017, 42(9): 126-131, 190. LIU Ning, DAI Wujiao, LIU Bin. A interpolation method of deformation monitoring data series[J]. Science of Surveying and Mapping, 2017, 42(9): 126-131, 190. [28] CRESSIE N A, WIKLE C. Strategies for dynamic space-time statistical modeling: discussion of “the Kriged Kalman filter” by Mardia et al[J]. Test, 1998, 7(2): 257-264. |