[1] MICKAELIAN A M. Astronomical surveys and big data[J]. Open Astronomy, 2016, 25(1): 75-88. [2] TORGE W, MULLER J. Geodesy [M]. 4th ed. Berlin: De Gruyter, 2012: 162-170. [3] 张超. 基于电子经纬仪的天文测量系统及应用研究[D]. 郑州:信息工程大学, 2009. ZHANG Chao. System-level development and application research on astronomic surveying system base on electronic the odolites[D]. Zhengzhou: Information Engineering University, 2009. [4] SHI C L, ZHANG C, DU L, et al. Automatic astronomical survey method based on video measurement robot[J]. Journal of Surveying Engineering,2020,146(2): 04020002. [5] LAMBROU E, PANTAZIS G. Astronomical azimuth determination by the hour angle of Polaris using ordinary total stations[J]. Survey Review, 2008, 40(308): 164-172. [6] 刘新江. 基于自动观测的天文大地测量新方法研究[D]. 郑州:信息工程大学,2020. LIU Xinjiang. New astronomy methods based on automatic observation[D]. Zhengzhou: Information Engineering University, 2020. [7] 马广富,王伟,张伟,等.面向小推力变轨的天文组合自主导航方法[J].宇航学报,2020,41(9):1166-1174. MA Guangfu, WANG Wei, ZHANG Wei, et al. Integrated celestial autonomous navigation method for low thrust orbit maneuver[J]. Journal of Astronautics, 2020, 41(9): 1166-1174. [8] YAO Yibin, YANG Yuanxi, SUN Heping, et al. Geodesy discipline: progress and perspective[J]. Journal of Geodesy and Geoinformation Science, 2021, 4(4): 1-10. [9] BALODIMOS D D, KORAKITIS R, LAMBROU E, et al. Fast and accurate determination of astronomical coordinates φ, λ and azimuth, using a total station and GPS receiver[J]. Survey Review, 2003, 37(290): 269-275. [10] HIRT C, BURKI B. Status of geodetic astronomy at the beginning of the 21st century[J]. Geodasie und Geoinformatik der Universitat Hannover, 2006, 258: 81-99. [11] GUILLAUME S. Determination of a precise gravity field for the CLIC feasibility studies[D]. Switzerland: ETH Zurich,2015: 5-20. [12] HIRT C, SEEBER G. Accuracy analysis of vertical deflection data observed with the Hannover digital zenith camera system TZK2-D[J]. Journal of Geodesy, 2008, 82(6). 347-356. [13] GERSTBACH G,PICHLER H. A small CCD zenith camera (ZC-G1) developed for rapid geoid monitoring in difficult projects[J]. Publications of the Astronomical Observatory of Belgrade, 2003, 75: 221-228. [14] 张超,詹银虎,王若璞,等.光学天文大地测量技术发展评述[J].测绘科学技术学报,2021,38(4):331-336. ZHANG Chao, ZHAN Yinhu, WANG Ruopu, et al. Review of the development of optical astro-geodesy technology[J]. Journal of Geomatics Science and Technology, 2021, 38(4): 331-336. [15] KUDRYS J. Automatic determination of vertical deflection components from GPS and zenithal star observations[J]. Acta Geodynamica and Geomaterialia,2007,4(4): 169-172. [16] 郭金运, 宋来勇, 常晓涛, 等. 数字天顶摄影仪确定垂线偏差及其精度分析[J]. 武汉大学学报(信息科学版), 2011, 36(9): 1085-1088, 1101. GUO Jinyun, SONG Laiyong, CHANG Xiaotao, et al. Vertical deflection measure with digital zenith camera and accuracy analysis[J]. Geomatics and Information Science of Wuhan University, 2011, 36(9): 1085-1088, 1101. [17] HAUK M, HIRT C, ACKERMANN C. Experiences with the QDaedalus system for astrogeodetic determination of deflections of the vertical[J]. Survey Review, 2017, 49(355): 294-301. [18] 张旭,张超,时春霖,等.图像全站仪相机的一种快速标定方法[J].测绘科学,2022,47(7):53-59. ZHANG Xu, ZHANG Chao, SHI Chunlin, et al. A fast calibration method for image total station[J].Science of Surveying and Mapping, 2022, 47(7):53-59. [19] 张旭,张超,詹银虎,等.图像全站仪的任意星全盲识别算法[J].测绘科学技术学报,2021,38(1):28-32. ZHANG Xu, ZHANG Chao, ZHAN Yinhu, et al. Random star recognition f method or image total station[J]. Journal of Geomatics Science and Technology, 2021, 38(1): 28-32. [20] 叶凯, 张超, 时春霖, 等. 视频测量机器人星识别算法在自动天文定向中的应用[J]. 测绘通报, 2019(2): 12-16, 44. YE Kai, ZHANG Chao, SHI Chunlin, et al. Application of star recognition algorithm based on video measuring robot in automatic astronomical orientation[J]. Bulletin of Surveying and Mapping, 2019(2): 12-16, 44. [21] 陈张雷, 李崇辉, 郑勇, 等. 天文定位中几何精度衰减因子最小值分析[J]. 测绘学报, 2019, 48(7): 879-888. DOI: 10.11947/j.AGCS.2019.20180479. CHEN Zhanglei, LI Chonghui, ZHENG Yong, et al. The minimum analysis of geometric dilution of precision in celestial positioning[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(7): 879-888. DOI: 10.11947/j.AGCS.2019.20180479. [22] 周玟龙, 詹银虎, 张鹤,等. 基于 GDOP 贡献值递推的自动天文选星算法[J]. 测绘科学技术学报, 2021, 38(3): 240-245. ZHOU Wenlong, ZHAN Yinhu, ZHANG He, et al. Automatic astronomical star selection algorithm based on GDOP contribution value recursion [J]. Journal of Geomatics Science and Technology, 2021, 38(3): 240-245. [23] 时春霖, 张超, 陈长远, 等.测量机器人小视场星图一维最大熵星点图像分割算法[J]. 测绘学报, 2018, 47(4): 26-34. DOI: 10.11947/j.AGCS.2018.20170202. SHI Chunlin, ZHANG Chao, CHEN Changyuan, et al. One dimensional maximum entropy image segmentation algorithm based on the small field of view of measuring robot star map [J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(4): 26-34. DOI: 10.11947/j.AGCS.2018.20170202. [24] ZHANG Chenyang, HUANG Teng, SHEN Yueqian.A review of RGB-D camera calibration methods[J].Journal of Geodesy and Geoinformation Science,2021,4(4):11-33. [25] 李海, 王若璞, 陈勇, 等. 图像全站仪星点质心快速提取方法研究[J]. 测绘科学技术学报, 2019, 36(5): 482-486. LI Hai, WANG Ruopu, CHEN Yong, et al. Fast star centroid extraction method for image total station[J]. Journal of Geomatics Science and Technology, 2019, 36(5): 482-486. [26] 国家质量监督检验检疫总局. 大地天文测量规范: GB/T 17943—2000[S]. 北京: 中国标准出版社, 2004. General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Specifications for the geodetic astronomy: GB/T 17943—2000[S]. Beijing: Standards Press of China, 2004. [27] 陈少杰,高玉平,尹东山.Gaia DR2星表及其与Hipparcos星表的比较[J].测绘科学技术学报,2020,37(05):441-446, 453. CHEN Shaojie, GAO Yuping, YIN Dongshan. Comparison between star catalogue Gaia-DR2 and hipparcos[J]. Journal of Geomatics Science and Technology, 2020, 37(5): 441-446, 453. [28] 詹银虎,张超,李飞战,等.基于图像全站仪的天文大地垂线偏差测量及其精度分析[J],测绘学报, 2023,52(2):175-182. DOl: 10,11947/j. AGCS.2023.20210486. ZHAN Yinhu, ZHANG Chao, LI Feizhan,et al,Astro-geodetic vertical deflection measurement and accuracy analysis based on image total station[J]. Acta Geodaetica et Cartographica Sinica, 2023,52(2): 175-182. DOl: 10,11947/j. AGCS.2023.20210486. |