[1] HIRT C, FEATHERSTONE W E, MARTI U. Combining EGM2008 and SRTM/DTM2006.0 residual terrain model data to improve quasigeoid computations in mountainous areas devoid of gravity data[J]. Journal of Geodesy, 2010, 84(9):557-567. [2] 李军, 欧阳明达, 李琦. 利用EGM2008+DTM2006.0模型精化区域似大地水准面[J]. 大地测量与地球动力学, 2018, 38(3):244-248. LI Jun, OUYANG Mingda, LI Qi. Refinement of regional quasi-geoid using the EGM2008+DTM2006.0 model[J]. Journal of Geodesy and Geodynamics, 2018, 38(3):244-248. [3] HIRT C, REXER M, CLAESSENS S. Topographic evaluation of fifth-generation GOCE gravity field models-globally and regionally[J]. Newton's Bulletin, 2015. [4] PAIL R, FECHER T, BARNES D, et al. Short note:the experimental geopotential model XGM2016[J]. Journal of Geodesy, 2018, 92(4):443-451. [5] FENG Yan, JIANG Yong, JIANG Yi, et al. Spherical cap harmonic analysis of regional magnetic anomalies based on CHAMP satellite data[J]. Applied Geophysics, 2016, 13(3):561-569. [6] KUHN M, HIRT C. Topographic gravitational potential up to second-order derivatives:an examination of approximation errors caused by rock-equivalent topography (RET)[J]. Journal of Geodesy, 2016, 90(9):883-902. [7] JIN S G, JIN R, LI D. Assessment of BeiDou differential code bias variations from multi-GNSS network observations[J]. Annales Geophysicae, 2016, 34(2):259-269. [8] 程娜. 基于多源数据的电离层异常监测及GNSS影响效应研究[J]. 测绘学报, 2021, 50(9):1277. DOI:10.11947/j.AGCS.2021.20200382. CHENG Na. Ionospheric anomaly monitoring based on multi-source data and study on GNSS effect[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(9):1277. DOI:10.11947/j.AGCS.2021.20200382. [9] 梁伟, 徐新禹, 李建成, 等. 联合EGM2008模型重力异常和GOCE观测数据构建超高阶地球重力场模型SGG-UGM-1[J]. 测绘学报, 2018, 47(4):425-434. DOI:10.11947/j.AGCS.2018.20170269. LIANG Wei, XU Xinyu, LI Jiancheng, et al. The determination of an ultra-high gravity field model SGG-UGM-1 by combining EGM2008 gravity anomaly and GOCE observation data[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(4):425-434. DOI:10.11947/j.AGCS.2018.20170269. [10] DRISCOLL J R, HEALY D M. Computing Fourier transforms and convolutions on the 2-sphere[J]. Advances in Applied Mathematics, 1994, 15(2):202-250. [11] SNEEUW N, BUN R. Global spherical harmonic computation by two-dimensional Fourier methods[J]. Journal of Geodesy, 1996, 70(4):224-232. [12] 吴星. 地球重力场调和分析方法研究[D]. 郑州:信息工程大学,2005. WU Xing. Research of methods of spherical harmonic analysis of the Earth's gravity field[D]. Zhengzhou:Information Engineering University, 2005. [13] SUN Rong. New algorithms for spherical harmonic analysis of area mean values over blocks delineated by equiangular and Gaussian grids[J]. Journal of Geodesy, 2021, 95(5):47. [14] 黄谟涛, 翟国君, 欧阳永忠, 等. 超高阶地球位模型的计算与分析[J]. 测绘学报, 2001, 30(3):208-213. HUANG Motao, ZHAI Guojun, OUYANG Yongzhong, et al. Analysis and computation of ultra high degree geopotential model[J]. Acta Geodaetica et Cartographic Sinica, 2001, 30(3):208-213. [15] 王正涛, 党亚民, 晁定波. 超高阶地球重力位模型确定的理论与方法[M]. 北京:测绘出版社, 2011. WANG Zhengtao, DANG Yamin, CHAO Dingbo. Theory and methodology of ultra-high-degree geopotential model determination[M]. Beijing:Surveying and Mapping Press, 2011. [16] FUKUSHIMA T. Numerical computation of spherical harmonics of arbitrary degree and order by extending exponent of floating point numbers[J]. Journal of Geodesy, 2012, 86(4):271-285. [17] CHRISTIAN H. Earth2014:1 arc-min shape, topography, bedrock and ice-sheet models-available as gridded data and degree-10, 800 spherical harmonics[J]. International Journal of Applied Earth Observation and Geoinformation, 2015, 39:103-112. [18] XING Zhibin, LI Shanshan, TIAN Miao, et al. Numerical experiments on column-wise recurrence formula to compute fully normalized associated Legendre functions of ultra-high degree and order[J]. Journal of Geodesy, 2020, 94(1):2. [19] RIZOS C. An efficient computer technique for the evaluation of geopotential from spherical harmonics[J]. Journal of Geodesy, 1979(11):161-169. [20] COLOMBO O L. Numerical methods for harmonic analysis on the sphere[D]. Ohio:The Ohio State University, 1981. [21] SNEEUW N. Global spherical harmonic analysis by least-squares and numerical quadrature methods in historical perspective[J]. Geophysical Journal International, 1994, 118(3):707-716. [22] 刘聪. 地球重力场椭球谐展开的数值算法与实现[D]. 武汉:武汉大学, 2020. LIU Cong. Numerical algorithm and implementation of ellipsoid harmonic expansion of earth gravity field[D]. Wuhan:Wuhan University, 2020. [23] REXER M, HIRT C. Ultra-high-degree surface spherical harmonic analysis using the Gauss-Legendre and the Driscoll/Healy quadrature theorem and application to planetary topography models of earth, Mars and Moon[J]. Surveys in Geophysics, 2015, 36(6):803-830. [24] 黄炎,王庆宾,冯进凯,等. 局部地形改正快速计算的GPU并行的棱柱法[J]. 测绘学报, 2020, 49(11):1430-1437. DOI:10.11947/j.AGCS.2020.20170403. HUANG Yan, WANG Qingbin, FENG Jinkai, et al. Rapid calculation of local topographic correction based on GPU parallel prism method[J]. Acta Geodaetica et Cartographica Sinica, 2020,49(11):1430-1437. DOI:10.11947/j.AGCS.2020.20170403. [25] 李新星,吴晓平,李姗姗,等. 块对角最小二乘方法在确定全球重力场模型中的应用[J].测绘学报, 2014, 43(8):778-785. LI Xinxing, WU Xiaoping, LI Shanshan, et al. The application of block-diagonal least-squares methods in geopotential model determination[J]. Acta Geodaetica et Cartographica Sinica, 2014,43(8):778-785. [26] 范雕. 卫星测高重力数据反演海底地形的理论和方法研究[D]. 郑州:信息工程大学, 2018. FAN Diao. Study on the theory and method of inversion of seabed topography from satellite altimetry gravity data[D]. Zhengzhou:Information Engineering University, 2018. |