[1] 焦利民,董婷,谷岩岩. 2000-2012年中国地级以上城市空间弹性分析[J].资源科学, 2016, 38(7):1254-1265. JIAO Limin, DONG Ting, GU Yanyan. The spatial resilience of prefecture-level cities in China from 2000 to 2012[J]. Resources Science, 2016, 38(7):1254-1265. [2] DANIS H, ULUCAK R, KHAN S U D. Determinants of the ecological footprint:role of renewable energy, natural resources, and urbanization[J]. Sustainable Cities and Society, 2020, 54:101996. [3] VAN VLIET J, BREGT A K, BROWN D G, et al. A review of current calibration and validation practices in land-change modeling[J]. Environmental Modelling&Software, 2016, 82:174-182. [4] ROODPOSHTI M S, ARYAL J, BRYAN B A. A novel algorithm for calculating transition potential in cellular automata models of land-use/cover change[J]. Environmental Modelling&Software, 2019, 112:70-81. [5] WANG Yang, LI Shuangcheng. Simulating multiple class urban land-use/cover changes by RBFN-based CA model[J]. Computers&Geosciences, 2011, 37(2):111-121. [6] SANTÉ I, GARCÍA A M, MIRANDA D, et al. Cellular automata models for the simulation of real-world urban processes:a review and analysis[J]. Landscape and Urban Planning, 2010, 96(2):108-122. [7] KARIMI F, SULTANA S, BABAKAN A S, et al. An enhanced support vector machine model for urban expansion prediction[J]. Computers, Environment and Urban Systems, 2019, 75:61-75. [8] XU Tingting, GAO J, COCO G. Simulation of urban expansion via integrating artificial neural network with Markov chain-cellular automata[J]. International Journal of Geographical Information Science, 2019, 33(10):1960-1983. [9] ZENG Haoran, ZHANG Bin, WANG Haijun. A hybrid modeling approach considering spatial heterogeneity and nonlinearity to discover the transition rules of urban cellular automata models[J/OL]. Environment and Planning B:Urban Analytics and City Science, 2023[2023-09-06]. https://DOI.org/10.1177/23998083221149018. [10] SHAFIZADEH-MOGHADAM H, ASGHARI A, TAYYEBI A, et al. Coupling machine learning, tree-based and statistical models with cellular automata to simulate urban growth[J]. Computers, Environment and Urban Systems, 2017, 64:297-308. [11] WANG Quan, WANG Haijun. An integrated approach of logistic-MCE-CA-Markov to predict the land use structure and their micro-spatial characteristics analysis in Wuhan metropolitan area, Central China[J]. Environmental Science and Pollution Research, 2022, 29(20):30030-30053. [12] WANG Haijun, ZHANG Bin, XIA Chang, et al. Using a maximum entropy model to optimize the stochastic component of urban cellular automata models[J]. International Journal of Geographical Information Science, 2020, 34(5):924-946. [13] 张晓娟,周启刚,王兆林,等.基于MCE-CA-Markov的三峡库区土地利用演变模拟及预测[J].农业工程学报, 2017, 33(19):268-277. ZHANG Xiaojuan, ZHOU Qigang, WANG Zhaolin, et al. Simulation and prediction of land use change in Three Gorges Reservoir Area based on MCE-CA-Markov[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(19):268-277. [14] HE Jialv, LI Xia, YAO Yao, et al. Mining transition rules of cellular automata for simulating urban expansion by using the deep learning techniques[J]. International Journal of Geographical Information Science, 2018, 32(10):2076-2097. [15] ZHAI Yaqian, YAO Yao, GUAN Qingfeng, et al. Simulating urban land use change by integrating a convolutional neural network with vector-based cellular automata[J]. International Journal of Geographical Information Science, 2020, 34(7):1475-1499. [16] 谢志文,王海军,张彬,等.城市扩展元胞自动机多结构卷积神经网络模型[J].测绘学报, 2020, 49(3):375-385. DOI:10.11947/j.AGCS.2020. 20190147. XIE Zhiwen, WANG Haijun, ZHANG Bin, et al. Urban expansion cellular automata model based on multi-structures convolutional neural networks[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(3):375-385. DOI:10.11947/j.AGCS.2020. 20190147. [17] ZHANG Bin, WANG Haijun. A new type of dual-scale neighborhood based on vectorization for cellular automata models[J]. GIScience&Remote Sensing, 2021, 58(3):386-404. [18] LIU Jiamin, XIAO Bin, LI Yueshi, et al. Simulation of dynamic urban expansion under ecological constraints using a long short term memory network model and cellular automata[J]. Remote Sensing, 2021, 13(8):1499. [19] SHI Xingjian, CHEN Zhourong, WANG Hao, et al. Convolutional LSTM network:a machine learning approach for precipitation nowcasting[EB/OL].[2022-08-23]. https://arxiv.org/pdf/1506.04214.pdf. [20] FENG Yongjiu, WANG Rong, TONG Xiaohua, et al. How much can temporally stationary factors explain cellular automata-based simulations of past and future urban growth?[J]. Computers, Environment and Urban Systems, 2019, 76:150-162. [21] WANG Jiasheng, YANG Kun, ZHU Yanhui, et al. Euclidean distance transform on the sea based on cellular automata modeling[J]. Journal of Geodesy and Geoinformation Science, 2020, 3(2):71-80. [22] WEI Y D, LI Han, YUE Wenze. Urban land expansion and regional inequality in transitional China[J]. Landscape and Urban Planning, 2017, 163:17-31. [23] JI Shunping, ZHANG Chi, XU Anjian, et al. 3 D convolutional neural networks for crop classification with multi-temporal remote sensing images[J]. Remote Sensing, 2018, 10(2):75. [24] ELBOUSHAKI A, HANNANE R, AFDEL K, et al. MultiD-CNN:a multi-dimensional feature learning approach based on deep convolutional networks for gesture recognition in RGB-D image sequences[J]. Expert Systems with Applications, 2020, 139:112829. [25] JI Shuiwang, XU Wei, YANG Ming, et al. 3 D convolutional neural networks for human action recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(1):221-231. [26] KOCABAS V, DRAGICEVIC S. Assessing cellular automata model behaviour using a sensitivity analysis approach[J]. Computers, Environment and Urban Systems, 2006, 30(6):921-953. [27] PONTIUS R G, BOERSMA W, CASTELLA J C, et al. Comparing the input, output, and validation maps for several models of land change[J]. The Annals of Regional Science, 2008, 42(1):11-37. [28] SETO K C, FRAGKIAS M. Quantifying spatiotemporal patterns of urban land-use change in four cities of China with time series landscape metrics[J]. Landscape Ecology, 2005, 20(7):871-888. [29] CHEN Yimin, LI Xia, LIU Xiaoping, et al. Modeling urban land-use dynamics in a fast developing city using the modified logistic cellular automaton with a patch-based simulation strategy[J]. International Journal of Geographical Information Science, 2014, 28(2):234-255. [30] MCGARIGAL K. FRAGSTATS v4:spatial pattern analysis program for categorical and continuous maps[CP/OL].[2022-08-23]. http://www.umass.edu/landeco/research/fragstats/fragstats.html. [31] CHEN Yimin, LI Xia, WANG Shujie, et al. Simulating urban form and energy consumption in the Pearl River Delta under different development strategies[J]. Annals of the Association of American Geographers, 2013, 103(6):1567-1585. [32] MUDIGERE D, NAUMOV M, SPISAK J, et al. Building recommender systems with PyTorch[C]//Proceedings of the 26 th ACM SIGKDD International Conference on Knowledge Discovery&Data Mining. New York:ACM Press, 2020:3525-3526. [33] KINGMA D P, BA J. Adam:a method for stochastic optimization[EB/OL].[2022-08-23]. https://arxiv.org/abs/1412.6980. [34] JAMIN A, HUMEAU-HEURTIER A. Cross-entropy methods:a review[J]. Entropy, 2020, 22(1):45. [35] HINTON G E, SRIVASTAVA N, KRIZHEVSKY A, et al. Improving neural networks by preventing coadaptation of feature detectors[EB/OL].[2022-08-23]. https://arxiv.org/abs/1207.0580 |