Acta Geodaetica et Cartographica Sinica ›› 2024, Vol. 53 ›› Issue (3): 425-434.doi: 10.11947/j.AGCS.2024.20220349
• Geodesy and Navigation • Previous Articles Next Articles
MU Mengxue1,2, ZHAO Long1,2,3
Received:2022-05-24
Revised:2023-12-30
Published:2024-04-08
Supported by:CLC Number:
MU Mengxue, ZHAO Long. A distributed GNSS/SINS/odometer resilient fusion navigation method for land vehicle[J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(3): 425-434.
| [1] SKOG I, HÄNDEL P. In-car positioning and navigation technologies:a survey[J]. IEEE Transactions on Intelligent Transportation Systems, 2009, 10(1):4-21. [2] 杨元喜. 弹性PNT基本框架[J]. 测绘学报, 2018, 47(7):893-898.DOI:10.11947/j.AGCS.2018.20180149. YANG Yuanxi. Resilient PNT concept frame[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(7):893-898.DOI:10.11947/j.AGCS.2018.20180149. [3] GROVES P D, WANG Lei, WALTER D, et al. The four key challenges of advanced multisensor navigation and positioning[C]//Proceedings of 2014 IEEE/ION Position, Location and Navigation Symposium. Monterey:IEEE, 2014. [4] CHIANG Kaiwei, CHANG H W, LI Yuhua, et al. Assessment for INS/GNSS/odometer/barometer integration in loosely-coupled and tightly-coupled scheme in a GNSS-degraded environment[J]. IEEE Sensors Journal, 2020, 20(6):3057-3069. [5] LI Zengke, WANG Jian, LI Binghao, et al. GPS/INS/odometer integrated system using fuzzy neural network for land vehicle navigation applications[J]. Journal of Navigation, 2014, 67(6):967-983. [6] WANG Maosong, WU Wenqi, HE Xiaofeng, et al. Consistent ST-EKF for long distance land vehicle navigation based on SINS/OD integration[J]. IEEE Transactions on Vehicular Technology, 2019, 68(11):10525-10534. [7] FU Qiangwen, LIU Yang, LIU Zhenbo, et al. High-accuracy SINS/LDV integration for long-distance land navigation[J]. IEEE/ASME Transactions on Mechatronics, 2018, 23(6):2952-2962. [8] LI Leilei, SUN Hongxing, YANG Sheng, et al. Online calibration and compensation of total odometer error in an integrated system[J]. Measurement, 2018, 123:69-79. [9] ALOFI A, ALGHAMDI A, ALAHMADI R, et al. A review of data fusion techniques[J]. International Journal of Computer Applications, 2017, 167(7):37-41. [10] KHALEGHI B, KHAMIS A, KARRAY F O, et al. Multisensor data fusion:a review of the state-of-the-art[J]. Information Fusion, 2013, 14(1):28-44. [11] DENG Zili, ZHANG Peng, QI Wenjuan, et al. Sequential covariance intersection fusion Kalman filter[J]. Information Sciences, 2012, 189:293-309. [12] 从金亮, 李银伢, 戚国庆, 等. 快速协方差交叉融合算法及应用[J]. 自动化学报, 2020, 46(7):1433-1444. CONG Jinliang, LI Yinya, QI Guoqing, et al. A fast covariance intersection fusion algorithm and its application[J]. Acta Automatica Sinica, 2020, 46(7):1433-1444. [13] SHEN Kai, WANG Meiling, FU Mengyin, et al. Observability analysis and adaptive information fusion for integrated navigation of unmanned ground vehicles[J]. IEEE Transactions on Industrial Electronics, 2020, 67(9):7659-7668. [14] LI Xu, ZHANG Weigong. An adaptive fault-tolerant multisensor navigation strategy for automated vehicles[J]. IEEE Transactions on Vehicular Technology, 2010, 59(6):2815-2829. [15] XING Zirui, XIA Yuanqing. Distributed federated Kalman filter fusion over multi-sensor unreliable networked systems[J]. IEEE Transactions on Circuits and Systems I:Regular Papers, 2016, 63(10):1714-1725. [16] CARLSON N A. Federated square root filter for decentralized parallel processors[J]. IEEE Transactions on Aerospace and Electronic Systems, 1990, 26(3):517-525. [17] ZHANG Xinchun, CUI Ximin, HUANG Bo. The design and implementation of an inertial GNSS odometer integrated navigation system based on a federated Kalman filter for high-speed railway track inspection[J]. Applied Sciences, 2021, 11(11):5244. [18] KIM J, JEE G I, LEE J G. A federated Kalman filter design using a gain fusion algorithm[C]//Proceedings of 1998 IFAC Symposium on Automatic Control in Aerospace. Seoul:Elsevier, 1998:385-391. [19] RAI N, ARORA N. Performance evaluation of Kalman filter sensor fusion based algorithm and gain fusion based algorithm[J]. International Journal for Scientific Research & Development, 2014, 2(3):2321-0613. [20] HU Gaoge, GAO Shesheng, ZHONG Yongmin, et al. Modified federated Kalman filter for INS/GNSS/CNS integration[J]. Journal of Aerospace Engineering, 2016, 230(1):30-44. [21] PAIK B S, OH J H. Gain fusion algorithm for decentralised parallel Kalman filters[J]. IEE Proceedings-Control Theory and Applications, 2000, 147(1):97-103. [22] WANG Rong, XIONG Zhi, LIU Jianye, et al. Chi-square and SPRT combined fault detection for multisensor navigation[J]. IEEE Transactions on Aerospace Electronic Systems, 2016, 52(3):1352-1365. [23] XU Bo, LI Shengxin, RAZZAQI A A, et al. A novel measurement information anomaly detection method for cooperative localization[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70:1-18. [24] JIANG Wei, LIU Dan, CAI Baigen, et al. A fault-tolerant tightly coupled GNSS/INS/OVS integration vehicle navigation system based on an FDP algorithm[J]. IEEE Transactions on Vehicular Technology, 2019, 68(7):6365-6378. [25] WANG Qiuying, CUI Xufei, LI Yibing, et al. Performance enhancement of a USV INS/CNS/DVL integration navigation system based on an adaptive information sharing factor federated filter[J]. Sensors, 2017, 17(2):239. [26] XU Jianxin, XIONG Zhi, LIU Jianye, et al. A dynamic vector-formed information sharing algorithm based on two-state Chi Square detection in an adaptive federated filter[J]. Journal of Navigation, 2019, 72(1):101-120. [27] LYU Xu, HU Baiqing, WANG Zheng, et al. A SINS/GNSS/VDM integrated navigation fault-tolerant mechanism based on adaptive information sharing factor[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71:3147335. [28] NOURMOHAMMADI H, KEIGHOBADI J. Design and experimental evaluation of indirect centralized and direct decentralized integration scheme for low-cost INS/GNSS system[J]. GPS Solutions, 2018, 22(3):65. |
| [1] | Bofeng LI, Long CHEN, Leitong YUAN. A high-precision deformation monitoring method with GNSS multi-baseline solutions [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(12): 2116-2128. |
| [2] | Tao GENG, Qiang LI, Lingyue CHENG, Jingnan LIU. The correction method of relativistic effects for GNSS and LEO satellites [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(12): 2129-2141. |
| [3] | Shoujian ZHANG, Xinyun CAO, Yulong GE, Fei SHEN. Yaw attitude modeling of GLONASS-K and GLONASS-M+ satellites and its impact on satellite clock estimation and precise point positioning [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(12): 2142-2152. |
| [4] | Jian CHEN, Jiahui WANG, Xingwang ZHAO, Chao LIU, Chunyang LIU, Xuexiang YU. Single-epoch RTK positioning optimization method based on BDS-3/Galileo multi-frequency ionosphere-reduced combinations [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(12): 2153-2167. |
| [5] | Xinrui LI, Xuanyu QU, Qin ZHANG, Bao SHU, Lingen MENG, Hao XU, Shuangcheng ZHANG, Guanwen HUANG, Hanwen WU, Li WANG. A data-driven multipath error mitigation method for PPP-RTK and its application in deformation monitoring [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(12): 2168-2181. |
| [6] | Jiaxin GAO, Xin SUI, Changqiang WANG, Aigong XU, Zhengxu SHI. Loop closure detection method for LiDAR SLAM supported by stable static point cloud clusters [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(12): 2194-2205. |
| [7] | Yupeng GU, Wanke LIU, Xiaohong ZHANG, Jie HU, Shujie HU, Weihao LEI, Kai ZHENG. Neural network-based GNSS stochastic model generation method by fisheye images [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(12): 2206-2218. |
| [8] | Zhijian CHEN. Research on LiDAR SLAM/INS/UWB multisource information fusion positioning theory and method [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(12): 2290-2290. |
| [9] | Weilong RAO. Study on mass migration and crustal deformation of the Qinghai-Xizang Plateau based on GRACE time-variable gravity [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(12): 2291-2291. |
| [10] | Liu YANG. Research on the key models of atmospheric water vapor inversion using precise point positioning [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(12): 2294-2294. |
| [11] | Ji QI. Foundation model for visible remote sensing image interpret guided by generalized supervisory signal [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(12): 2296-2296. |
| [12] | Shuren GUO, Hongliang CAI, Weiguang GAO, Wei ZHOU, Changjiang GENG, Gang LI, Ming DONG, Chengeng SU, Kun JIANG, Yinan MENG, Lei CHEN, Junyang PAN, Kai LI, Qifen LI, Xiaomei TANG, Shuangna ZHANG, Xiaogong HU. A novel architecture of global navigation satellite system for accurate and trusted PNT services [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(11): 1934-1953. |
| [13] | Yuanyuan GU, Xu YAO, Lu AN, Gang QIAO, Tong HAO. Analysis and evaluation of route roughness along the CHINARE inland traverse based on high-precision dynamic GNSS data [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(11): 1968-1979. |
| [14] | Hanyun SONG, Xin LI, Guanwen HUANG, Hang LI. Refinement of UAV barometer altimetry model and GNSS/SINS integrated positioning enhancement [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(11): 1980-1991. |
| [15] | Bo LI. BDS-3/GNSS PPP-RTK augmented products estimation and credible positioning methods [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(11): 2097-2097. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||