Acta Geodaetica et Cartographica Sinica ›› 2024, Vol. 53 ›› Issue (5): 900-916.doi: 10.11947/j.AGCS.2024.20230132
• Geodesy and Navigation • Previous Articles Next Articles
Zhiwei MA1(), Shaofeng BIAN2, Ruyi XU3, Yongbing CHEN2
Received:
2023-05-08
Revised:
2024-04-02
Published:
2024-06-19
About author:
MA Zhiwei (1986—), male, PhD, lecturer, majors in methods for multi-source gravity data fusion and local gravity field modeling. E-mail: jzmazhiwei@163.com
Supported by:
CLC Number:
Zhiwei MA, Shaofeng BIAN, Ruyi XU, Yongbing CHEN. Band-limited SRBF quadratic approximation method for local gravity fields in complex regions[J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(5): 900-916.
Tab. 1
Cumulative geoid errors of GGM at different spherical harmonic degrees"
模型 | 80阶 | 120阶 | 160阶 | 200阶 | 240阶 | 280阶 | 300阶 |
---|---|---|---|---|---|---|---|
GOC6S | 0.000 | 0.001 | 0.004 | 0.015 | 0.049 | 0.115 | 0.145 |
GGC16 | 0.001 | 0.002 | 0.006 | 0.020 | 0.058 | 0.122 | - |
TJ21S | 0.000 | 0.000 | 0.001 | 0.004 | 0.012 | 0.026 | 0.032 |
WHU22S | 0.000 | 0.001 | 0.003 | 0.009 | 0.025 | 0.054 | 0.066 |
TIM6 | 0.001 | 0.003 | 0.005 | 0.015 | 0.049 | 0.117 | 0.139 |
SPW5 | 0.013 | 0.021 | 0.027 | 0.033 | 0.061 | 0.111 | 0.134 |
Tab. 3
The differences between geoid undulations from gravity field models calculated with different input parameters and those obtained from GPS/leveling"
展开阶次 | GGM | 核函数 | Mean | STD | GGM | 核函数 | Mean | STD |
---|---|---|---|---|---|---|---|---|
280 | GOC6S | Shannon | -0.087 | 0.111 | GGC16 | Shannon | -0.088 | 0.112 |
Blackman | -0.100 | 0.115 | Blackman | -0.101 | 0.116 | |||
Cup | -0.099 | 0.120 | Cup | -0.100 | 0.121 | |||
TJ21S | Shannon | -0.088 | 0.112 | WHU22S | Shannon | -0.093 | 0.111 | |
Blackman | -0.101 | 0.115 | Blackman | -0.102 | 0.114 | |||
Cup | -0.099 | 0.120 | Cup | -0.100 | 0.120 | |||
TIM6 | Shannon | -0.087 | 0.111 | SPW5 | Shannon | -0.097 | 0.105 | |
Blackman | -0.100 | 0.115 | Blackman | -0.100 | 0.115 | |||
Cup | -0.099 | 0.120 | Cup | -0.103 | 0.118 | |||
300 | GOC6S | Shannon | -0.078 | 0.120 | GGC16 | Shannon | — | — |
Blackman | -0.116 | 0.136 | Blackman | — | — | |||
Cup | -0.120 | 0.142 | Cup | — | — | |||
TJ21S | Shannon | -0.074 | 0.121 | WHU22S | Shannon | -0.079 | 0.119 | |
Blackman | -0.100 | 0.137 | Blackman | -0.109 | 0.134 | |||
Cup | -0.103 | 0.147 | Cup | -0.113 | 0.146 | |||
TIM6 | Shannon | -0.081 | 0.120 | SPW5 | Shannon | -0.084 | 0.113 | |
Blackman | -0.118 | 0.132 | Blackman | -0.104 | 0.128 | |||
Cup | -0.122 | 0.146 | Cup | -0.104 | 0.133 |
Tab. 5
The differences between geoid heights calculated from different models and those derived from GPS/leveling data"
模型 | 模型构成 | Max | Min | Mean | STD | |
---|---|---|---|---|---|---|
参考场 | 剩余场 | |||||
GCM1 | GOC6S(0~160) | Air(161~1500)+GOC6S (161~280) | 0.125 | -0.320 | -0.087 | 0.111 |
GAM1 | GOC6S(0~160) | Air(161~1500) | 0.196 | -0.344 | -0.070 | 0.128 |
GCM2 | GGC16 (0~160) | Air (161~1500)+GGC16 (161~280) | 0.116 | -0.312 | -0.088 | 0.112 |
GAM2 | GGC16(0~160) | Air(161~1500) | 0.193 | -0.346 | -0.072 | 0.127 |
GCM3 | TJ21S (0~160) | Air (161~1500)+TJ21S (161~280) | 0.145 | -0.330 | -0.088 | 0.112 |
GAM3 | TJ21S (0~160) | Air(161~1500) | 0.196 | -0.342 | -0.068 | 0.128 |
GCM4 | WHU22S (0~160) | Air (161~1500)+WHU22S (161~280) | 0.140 | -0.350 | -0.093 | 0.111 |
GAM4 | WHU22S (0~160) | Air(161~1500) | 0.194 | -0.342 | 0.070 | 0.127 |
GCM5 | TIM6(0~160) | Air (161~1500)+TIM6(161~280) | 0.117 | -0.311 | -0.087 | 0.111 |
GAM5 | TIM6(0~160) | Air(161~1500) | 0.196 | -0.340 | -0.068 | 0.127 |
GCM6 | SPW5(0~160) | Air (161~1500)+SPW5(161~280) | 0.102 | -0.336 | -0.097 | 0.105 |
GAM6 | SPW5(0~160) | Air(161~1500) | 0.196 | -0.341 | -0.068 | 0.127 |
[1] | 李建成, 陈俊勇, 宁津生, 等. 地球重力场逼近理论与中国2000似大地水准面的确定[M]. 武汉: 武汉大学出版社, 2003. |
LI Jiancheng, CHEN Junyong, NING Jinsheng, et al. The earth's gravitational field approximation theory and the determination of China 2000 quasi-geoid[M]. Wuhan: Wuhan University Press, 2003. | |
[2] | WU Yihao, LUO Zhicai, CHEN Wu, et al. High-resolution regional gravity field recovery from Poisson wavelets using heterogeneous observational techniques[J]. Earth, Planets and Space, 2017, 69(34): 1-15. |
[3] | NEYMAN Y M, LI J, LIU Q. Modification of Stokes and Vening-Meinesz formulas for the inner zone of arbitrary shape by minimization of upper bound truncation errors[J]. Journal of Geodesy, 1996, 70(7): 410-418. |
[4] | ABBAK R A, SJÖBERG L E, ELLMANN A, et al. A precise gravimetric geoid model in a mountainous area with scarce gravity data: a case study in central Turkey[J]. Studia Geophysica et Geodaetica, 2012, 56(4): 909-927. |
[5] | FEATHERSTONE W E. Deterministic, stochastic, hybrid and band-limited modifications of Hotine's integral[J]. Journal of Geodesy, 2013, 87(5): 487-500. |
[6] | WICHIENGAROEN C. A comparison of gravimetric undulations computed by the modified Molodensky truncation method and the method of least squares spectral combination by optimal integral kernels[J]. Bulletin Géodésique, 1984, 58(4): 494-509. |
[7] | NAHAVANDCHI H, SJÖBERG L E. Precise geoid determination over Sweden using the Stokes-Helmert method and improved topographic corrections[J]. Journal of Geodesy, 2001, 75(2): 74-88. |
[8] | LIU Yusheng, LOU Lizhi. Unified land-ocean quasi-geoid computation from heterogeneous data sets based on radial basis functions[J]. Remote Sensing, 2022, 14(13): 3015. |
[9] | FORSBERG R, TSCHERNING C C. The use of height data in gravity field approximation by collocation[J]. Journal of Geophysical Research: Solid Earth, 1981, 86(B9): 7843-7854. |
[10] | HWANG C, HSIAO Y, SHIH H, et al. Geodetic and geophysical results from a Taiwan airborne gravity survey: data reduction and accuracy assessment[J]. Journal of Geophysical Research: Solid Earth, 2007, 112(B4). https://doi.org/10.1029/2005JB004220. |
[11] | MCCUBBINE J C, AMOS M J, TONTINI F C, et al. The New Zealand gravimetric quasigeoid model 2017 that incorporates nationwide airborne gravimetry[J]. Journal of Geodesy, 2018, 92(8): 923-937. |
[12] | WILLBERG M, ZINGERLE P, PAIL R. Integration of airborne gravimetry data filtering into residual least-squares collocation: example from the 1 cm geoid experiment[J]. Journal of Geodesy, 2020, 94(8): 75. https://doi.org/10.1007/s00190-020-01396-2. |
[13] | VARGA M, PITONˇÁK M, NOVÁK P, et al. Contribution of GRAV-D airborne gravity to improvement of regional gravimetric geoid modelling in Colorado, USA[J]. Journal of Geodesy, 2021, 95(5): 53. https://doi.org/10.1007/s00190-021-01494-9. |
[14] | IŞIK M S, EROL B, EROL S, et al. High-resolution geoid modeling using least squares modification of Stokes and Hotine formulas in Colorado[J]. Journal of Geodesy, 2021, 95(5): 49. https://doi.org/10.1007/s00190-021-01501-2. |
[15] | WU Yihao, ZHOU Hao, ZHONG Bo, et al. Regional gravity field recovery using the GOCE gravity gradient tensor and heterogeneous gravimetry and altimetry data[J]. Journal of Geophysical Research (Solid Earth), 2017, 122(8): 6928-6952. |
[16] | FREEDEN W, GERVENS T, SCHREINER M. Constructive approximation on the sphere (with applications to geomathematics) [M]. Oxford: Clarendon Press, 1998. |
[17] | SCHMIDT M, FENGLER M, MAYER-GÜRR T, et al. Regional gravity modeling in terms of spherical base functions[J]. Journal of Geodesy, 2007, 81(1): 17-38. |
[18] | KLEES R, TENZER R, PRUTKIN I, et al. A data-driven approach to local gravity field modelling using spherical radial basis functions[J]. Journal of Geodesy, 2008, 82(8): 457-471. |
[19] | WITTWER T. Local gravity field modelling with radial basis functions[D]. Delft: Delft University of Technology, 2009. |
[20] | NAEIMI M, FLURY J, BRIEDEN P. On the regularization of regional gravity field solutions in spherical radial base functions[J]. Geophysical Journal International, 2015, 202(2): 1041-1053. |
[21] | 马志伟, 陆洋, 涂弋, 等. 利用Abel-Poisson径向基函数模型化局部重力场[J]. 测绘学报, 2016, 45(9): 1019-1027. DOI: 10.11947/j.AGCS.2016.20150519. |
MA Zhiwei, LU Yang, TU Yi, et al. Regional gravity field modeling with Abel-Poisson radial basis functions[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(9)1019-1027. DOI: 10.11947/j.AGCS.2016.20150519. | |
[22] | MA Zhiwei, YANG Meng, LIU Jie. Regional gravity field modeling using band-limited SRBFs: a case study in Colorado[J]. Remote Sensing, 2023, 15(18): 4515. |
[23] | KLEES R, SLOBBE D C, FARAHANI H H. A methodology for least-squares local quasi-geoid modelling using a noisy satellite-only gravity field model[J]. Journal of Geodesy, 2018, 92(4): 431-442. |
[24] | LIU Qing, SCHMIDT M, SÁNCHEZ L, et al. Regional gravity field refinement for (quasi-) geoid determination based on spherical radial basis functions in Colorado[J]. Journal of Geodesy, 2020, 94(10): 99. https://doi.org/10.1007/s00190-020-01431-2. |
[25] | LI Xiaopeng. Using radial basis functions in airborne gravimetry for local geoid improvement[J]. Journal of Geodesy, 2018, 92(5): 471-485. |
[26] | HEISKANENW A, MORITZ H. Physical geodesy[M]. San Francisco: W. H. Freeman, 1967. |
[27] | KOCH K R, KUSCHE J. Regularization of geopotential determination from satellite data by variance components[J]. Journal of Geodesy, 2002, 76(5): 259-268. |
[28] | BARTHELMES F. Definition of functionals of the geopotential and their calculation from spherical harmonic models[R]. Potsdam: GFZ German Research Centre for Geosciences, 2013 |
[29] | MORITZ H. Geodetic reference system 1980[J]. Journal of Geodesy, 2000, 74(1): 128-133. |
[30] | HIRT C, REXER M. Earth2014: 1 arc-min shape, topography, bedrock and ice-sheet models-available as gridded data and degree-10, 800 spherical harmonics[J]. International Journal of Applied Earth Observation and Geoinformation, 2015, 39: 103-112. |
[31] | FOROUGHI I, VANÍCˇEK P, KINGDON R W, et al. Sub-centimetre geoid[J]. Journal of Geodesy, 2019, 93(6): 849-868. |
[32] | JIANG Tao, WANG Yanming. On the spectral combination of satellite gravity model, terrestrial and airborne gravity data for local gravimetric geoid computation[J]. Journal of Geodesy, 2016, 90(12): 1405-1418. |
[33] | TORGE W. Gravimetry[M]. Berlin: Walter de Gruyter, 1989. |
[34] | EICKER A. Gravity field refinement by radial basis functions from in-situ satellite data[D]. Bonn: Rheinische Friedrich-Wilhelms-Universität Bonn, 2008. |
[35] | BENTEL K, SCHMIDT M, DENBY C. Artifacts in regional gravity representations with spherical radial basis functions[J]. Journal of Geographical Sciences, 2013, 3(3): 173-187. |
[36] | NAEIMI M. Inversion of satellite gravity data using spherical radial base functions[D]. Hannover: Leibniz Universität Hannover, 2013. |
[37] | 赵永奇, 李建成, 徐新禹, 等. 利用GOCE和GRACE卫星观测数据确定静态重力场模型[J]. 地球物理学报, 2023, 66(6): 2322-2336. |
ZHAO Yongqi, LI Jiancheng, XU Xinyu, et al. Determination of static gravity field model by using satellite data of GOCE and GRACE[J]. Chinese Journal of Geophysics, 2023, 66(6): 2322-2336. | |
[38] | CHEN J, ZHANG X, CHEN Q, et al. Static gravity field recovery and accuracy analysis based on reprocessed GOCE level 1b gravity gradient observations[C]//Proceedings of the 24th EGU General Assembly, Vienna: IEEE, 2022. |
[39] | SÁNCHEZ L, ÅGREN J, HUANG Jianliang, et al. Strategy for the realisation of the international height reference system (IHRS)[J]. Journal of Geodesy, 2021, 95(3): 33. https://doi.org/10.1007/s00190-021-01481-0. |
[40] | BUCHA B, JANÁK J, PAPCˇO J, et al. High-resolution regional gravity field modelling in a mountainous area from terrestrial gravity data[J]. Geophysical Journal International, 2016, 207(2): 949-966. |
[41] | REXER M, HIRT C, CLAESSENS S, et al. Layer-based modelling of the earth's gravitational potential up to 10-km scale in spherical harmonics in spherical and ellipsoidal approximation[J]. Surveys in Geophysics, 2016, 37(6): 1035-1074. |
[42] | HIRT C, KUHN M, CLAESSENS S, et al. Study of the earth's short-scale gravity field using the ERTM2160 gravity model[J]. Computers & Geosciences, 2014, 73: 71-80. |
[43] | WANG Y M, SALEH J, LI X, et al. The US gravimetric geoid of 2009 (USGG2009): model development and evaluation[J]. Journal of Geodesy, 2012, 86(3): 165-180. |
[1] | . Tikhonov Two-Parameter Regulation Algorithm in Downward Continuation of Airborne Gravity Data [J]. Acta Geodaetica et Cartographica Sinica, 2011, 40(6): 690-696. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||