[1] |
YAO Tandong, THOMPSON L, YANG Wei, et al. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings[J]. Nature Climate Change, 2012, 2: 663-667.
|
[2] |
ZEMP M, HUSS M, THIBERT E, et al. Global glacier mass changes and their contributions to sea-level rise from 1961 to 2016[J]. Nature, 2019, 568: 382-386.
|
[3] |
LI Xin, CHENG Guodong, JIN Huijun, et al. Cryospheric change in China[J]. Global and Planetary Change, 2008, 62(3/4): 210-218.
|
[4] |
HUGONNET R, MCNABB R, BERTHIER E, et al. Accelerated global glacier mass loss in the early twenty-first century[J]. Nature, 2021, 592(7856): 726-731.
|
[5] |
姚檀栋, 余武生, 邬光剑, 等. 青藏高原及周边地区近期冰川状态失常与灾变风险[J]. 科学通报, 2019, 64(27): 2770-2782.
|
|
YAO Tandong, YU Wusheng, WU Guangjian, et al. Glacier anomalies and relevant disaster risks on the Tibetan Plateau and surroundings[J]. Chinese Science Bulletin, 2019, 64(27): 2770-2782.
|
[6] |
邬光剑, 姚檀栋, 王伟财, 等. 青藏高原及周边地区的冰川灾害[J]. 中国科学院院刊, 2019, 34(11): 1285-1292.
|
|
WU Guangjian, YAO Tandong, WANG Weicai, et al. Glacial hazards on Tibetan Plateau and surrounding alpines[J]. Bulletin of Chinese Academy of Sciences, 2019, 34(11): 1285-1292.
|
[7] |
VEH G, KORUP O, WALZ A. Hazard from Himalayan glacier lake outburst floods[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(2): 907-912.
|
[8] |
崔鹏, 郭晓军, 姜天海, 等. “亚洲水塔” 变化的灾害效应与减灾对策[J]. 中国科学院院刊, 2019, 34(11): 1313-1321.
|
|
CUI Peng, GUO Xiaojun, JIANG Tianhai, et al. Disaster effect induced by Asian water tower change and mitigation strategies[J]. Bulletin of Chinese Academy of Sciences, 2019, 34(11): 1313-1321.
|
[9] |
ZHOU Yushan, LI Xin, ZHENG Donghai, et al. The joint driving effects of climate and weather changes caused the Chamoli glacier-rock avalanche in the high altitudes of the India Himalaya[J]. Science China Earth Sciences, 2021, 64(11): 1909-1921.
|
[10] |
王晓明, 张靖琳, 刘世伟, 等. “亚洲水塔” 在高亚地区的社会经济作用[J]. 中国科学院院刊, 2019, 34(11): 1332-1340.
|
|
WANG Xiaoming, ZHANG Jinglin, LIU Shiwei, et al. Socioeconomic significance of Asian water tower in high Asia region[J]. Bulletin of Chinese Academy of Sciences, 2019, 34(11): 1332-1340.
|
[11] |
CHEN Fahu, DING Lin, PIAO Shilong, et al. The Tibetan Plateau as the engine for Asian environmental change: the Tibetan Plateau Earth system research into a new era[J]. Science Bulletin, 2021, 66(13): 1263-1266.
|
[12] |
LAMBRECHT A, MAYER C, AIZEN V, et al. The evolution of Fedchenko glacier in the Pamir, Tajikistan, during the past eight decades[J]. Journal of Glaciology, 2014, 60(220): 233-244.
|
[13] |
AIZEN V B, KUZMICHENOK V A, SURAZAKOV A B, et al. Glacier changes in the Tien Shan as determined from topographic and remotely sensed data[J]. Global and Planetary Change, 2007, 56(3/4): 328-340.
|
[14] |
HAGG W J, BRAUN L N, UVAROV V N, et al. A comparison of three methods of mass-balance determination in the Tuyuksu glacier region, Tien Shan, Central Asia[J]. Journal of Glaciology, 2004, 50(171): 505-510.
|
[15] |
WU Kunpeng, LIU Shiyin, JIANG Zongli, et al. Recent glacier mass balance and area changes in the Kangri Karpo Mountains from DEMs and glacier inventories[J]. The Cryosphere, 2018, 12(1): 103-121.
|
[16] |
ZHANG Zhen, DU Zhiheng, LIU Shiyin, et al. Glacier mass changes over Duxueshan, Burog Kangri, and Zangser Kangri in the Inner Tibetan Plateau[J]. Environmental Earth Sciences, 2020, 79(12): 292.
|
[17] |
ZHANG Zhen, LIU Shiyin, JIANG Zongli, et al. Glacier variations at Xinqingfeng and Malan ice caps in the inner Tibetan Plateau since 1970[J]. Remote Sensing, 2020, 12(3): 421.
|
[18] |
YE Qinghua, BOLCH T, NARUSE R, et al. Glacier mass changes in Rongbuk Catchment on Mt. Qomolangma from 1974 to 2006 based on topographic maps and ALOS PRISM data[J]. Journal of Hydrology, 2015, 530: 273-280.
|
[19] |
YANG Wei, YAO Tandong, XU Baiqing, et al. Quick ice mass loss and abrupt retreat of the maritime glaciers in the Kangri Karpo Mountains, southeast Tibetan Plateau[J]. Chinese Science Bulletin, 2008, 53(16): 2547-2551.
|
[20] |
CHE Yanjun, WANG Shijin, YI Shuhua, et al. Summer mass balance and surface velocity derived by unmanned aerial vehicle on debris-covered region of Baishui River glacier No.1, Yulong snow mountain[J]. Remote Sensing, 2020, 12(20): 3280.
|
[21] |
YANG Wei, ZHAO Chuanxi, WESTOBY M, et al. Seasonal dynamics of a temperate Tibetan glacier revealed by high-resolution UAV photogrammetry and in situ measurements[J]. Remote Sensing, 2020, 12(15): 2389.
|
[22] |
YI Shuang, SUN Wenke. Evaluation of glacier changes in high-mountain Asia based on 10 year GRACE RL05 models[J]. Journal of Geophysical Research: Solid Earth, 2014, 119(3): 2504-2517.
|
[23] |
SONG Chunqiao, KE Linghong, HUANG Bo, et al. Can mountain glacier melting explains the GRACE-observed mass loss in the southeast Tibetan Plateau: from a climate perspective?[J]. Global and Planetary Change, 2015, 124: 1-9.
|