[1] |
孔祥元, 郭际明, 刘宗泉. 大地测量学基础[M]. 2版. 武汉: 武汉大学出版社, 2001.
|
|
KONG Xiangyuan, GUO Jiming, LIU Zongquan. Foundation of geodesy[M]. 2nd version. Wuhan: Wuhan University Press, 2001.
|
[2] |
王会, 王晓栋. 常微分方程数值解法在子午线正反算中的应用[J]. 铁道勘察, 2018, 44(1):15-18.
|
|
WANG Hui, WANG Xiaodong. Application of numerical solution of ordinary differential equation in the positive and negative calculation of meridian[J]. Railway Investigation and Surveying, 2018, 44(1):15-18.
|
[3] |
杨双富. 再议计算子午线弧长的数值积分法[J]. 城市勘测, 2010(6):140-142, 145.
|
|
YANG Shuangfu. Reconsideration of the numerical calculation of radial arc length integral method[J]. Urban Geotechnical Investigation & Surveying, 2010(6):140-142,145.
|
[4] |
熊介. 椭球大地测量学[M]. 北京: 解放军出版社, 1988.
|
|
XIONG Jie. Ellipsoidal geodesy[M]. Beijing: PLA Press, 1988.
|
[5] |
郑红晓, 张红方, 雷伟伟. 子午线弧长计算的数值积分算法及其比较[J]. 铁道勘察, 2014, 40(6):8-10.
|
|
ZHENG Hongxiao, ZHANG Hongfang, LEI Weiwei. The calculation and comparison of meridian arc length based on numerical integral algorithm[J]. Railway Investigation and Surveying, 2014, 40(6):8-10.
|
[6] |
TSENG W K, CHANG Weijie, PEN C L. New meridian arc formulae by the least squares method[J]. Journal of Navigation, 2014, 67(3):495-510.
|
[7] |
TSENG W K, TSAI K C, LIOU Chian, et al. Algorithms for the generalized inverse solution and direct solution: using an algebra computer-based system to obtain meridian arc length[J]. Journal of Marine Science and Technology, 2023, 31(2):9.
|
[8] |
边少锋, 李厚朴. 大地测量计算机代数分析[M]. 北京: 科学出版社, 2018.
|
|
BIAN Shaofeng, LI Houpu. Computer algebra analysis on geodesy[M]. Beijing: Science Press, 2018.
|
[9] |
刘学杰, 杨丽坤. 子午线弧长的计算方法及精度分析[J]. 测绘通报, 2017(8):106-109, 116.
|
|
LIU Xuejie, YANG Likun. Calculation methods and accuracy analysis of meridian arc length[J]. Bulletin of Surveying and Mapping, 2017(8):106-109, 116.
|
[10] |
王元波, 杨丽坤, 张洁. 计算子午线弧长的三类算法及其分析比较[J]. 测绘与空间地理信息, 2017, 40(9):99-102.
|
|
WANG Yuanbo, YANG Likun, ZHANG Jie. The three kinds of algorithm for calculating meridian arc length and their analysis and comparison[J]. Geomatics & Spatial Information Technology, 2017, 40(9):99-102.
|
[11] |
杨丽坤, 雷伟伟. 计算子午线弧长与底点纬度的常微分方程数值解法[J]. 测绘科学技术学报, 2017, 34(6):560-563.
|
|
YANG Likun, LEI Weiwei. Calculation of meridian arc length and latitude of pedal based on the numerical solution of ordinary differential equations[J]. Journal of Geomatics Science and Technology, 2017, 34(6):560-563.
|
[12] |
李松林, 李厚朴, 边少锋, 等. 等角纬度与子午线弧长变换的直接表达式[J]. 海洋测绘, 2019, 39(2):21-25.
|
|
LI Songlin, LI Houpu, BIAN Shaofeng, et al. Direct expansions of transformation between conformal latitude and meridian arc length[J]. Hydrographic Surveying and Charting, 2019, 39(2):21-25.
|
[13] |
刘修善. 计算子午线弧长的数值积分法[J]. 测绘通报, 2006(5):4-6.
|
|
LIU Xiushan. Numerical integral method of calculating meridian arc length[J]. Bulletin of Surveying and Mapping, 2006(5):4-6.
|
[14] |
牛卓立. 以空间直角坐标为参数的子午线弧长计算公式[J]. 测绘通报, 2001(11):14-15.
|
|
NIU Zhuoli. Formulae for calculation of meridian arc length by the parameters of space rectangular coordinates[J]. Bulletin of Surveying and Mapping, 2001(11):14-15.
|
[15] |
边少锋, 李厚朴, 李忠美. 地图投影计算机代数分析研究进展[J]. 测绘学报, 2017, 46(10):1557-1569. DOI: 10.11947/j.AGCS.2017.20170396.
|
|
BIAN Shaofeng, LI Houpu, LI Zhongmei. Research progress in mathematical analysis of map projection by computer algebra[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10):1557-1569. DOI: 10.11947/j.AGCS.2017.20170396.
|
[16] |
李厚朴, 边少锋, 钟斌. 地理坐标系计算机代数精密分析理论[M]. 北京: 国防工业出版社, 2015.
|
|
LI Houpu, BIAN Shaofeng, ZHONG Bin. Precise analysis theory of computer algebra in geographical coordinate system[M]. Beijing: National Defense Industry Press, 2015.
|
[17] |
RATH G, BESSEL R. Bestimmung der axen des elliptischen rotationssphäroids, welches den vorhandenen messungen von meridianbögen der erde am meisten entspricht[J]. Astronomische Nachrichten, 1837, 14(23):333-346.
|
[18] |
李晓勇, 李厚朴, 刘国辉, 等. 等面积纬度函数与常用纬度间的直接变换[J]. 海洋测绘, 2022, 42(2):78-82.
|
|
LI Xiaoyong, LI Houpu, LIU Guohui, et al. Direct transformation between equal-area latitude function and common latitude[J]. Hydrographic Surveying and Charting, 2022, 42(2):78-82.
|
[19] |
HELMERT F R. Die mathematischen und physikalischen theorieen der höheren geodäsie[M]. Leipzig: Druck und Verlag von B.G. Teubner, 1884: 46-48.
|
[20] |
BIAN Shaofeng, CHEN Yongbing. Solving an inverse problem of a meridian arc in terms of computer algebra system[J]. Journal of Surveying Engineering, 2006, 132(1):7-10.
|
[21] |
BOWRING B R. New equations for meridional distance[J]. Bulletin Géodésique, 1983, 57(1):374-381.
|
[22] |
KARNEY C F F. On auxiliary latitudes[J]. Survey Review, 2024, 56(395):165-180.
|
[23] |
KAWASE K. A general formula for calculating meridian arc length and its application to coordinate conversion in the Gauss-Krüger projection[J]. Bulletin of the Geospatial Information Authority of Japan, 2011, 59:1-13.
|
[24] |
过家春, 赵秀侠, 徐丽, 等. 基于第二类椭圆积分的子午线弧长公式变换及解算[J]. 大地测量与地球动力学, 2011, 31(4):94-98.
|
|
GUO Jiachun, ZHAO Xiuxia, XU Li, et al. Calculating meridian arc length by transforming its formulae into elliptic integral of second kind[J]. Journal of Geodesy and Geodynamics, 2011, 31(4):94-98.
|
[25] |
过家春, 李厚朴, 庄云玲, 等. 依不同纬度变量的子午线弧长正反解公式的级数展开[J]. 测绘学报, 2016, 45(5):560-565. DOI: 10.11947/j.AGCS.2016.20140575.
|
|
GUO Jiachun, LI Houpu, ZHUANG Yunling, et al. Series expansion for direct and inverse solutions of meridian in terms of different latitude variables[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(5):560-565. DOI: 10.11947/j.AGCS.2016.20140575.
|
[26] |
过家春. 子午线弧长公式的简化及其泰勒级数解释[J]. 测绘学报, 2014, 43(2):125-130. DOI: 10.13485/j.cnki.11G2089.2014.0017.
|
|
GUO Jiachun. A simplification of the meridian formula and its Taylor-series interpretation[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(2):125-130. DOI: 10.13485/j.cnki.11G2089.2014.0017.
|
[27] |
汪绍航, 边少锋, 金立新, 等. 椭球大地测量常用幂级数的第三扁率展开[J]. 测绘科学技术学报, 2021, 38(6):571-578.
|
|
WANG Shaohang, BIAN Shaofeng, JIN Lixin, et al. Third flattening expansion of common power series in ellipsoidal geodesy[J]. Journal of Geomatics Science and Technology, 2021, 38(6):571-578.
|
[28] |
周东权, 刘敏, 魏冲, 等. 常用投影大地线的高效展绘及Mathematica实现[J]. 现代导航, 2023, 14(6):422-430.
|
|
ZHOU Dongquan, LIU Min, WEI Chong, et al. Efficient mapping of common projected geodetic lines and mathematica implementation[J]. Modern Navigation, 2023, 14(6):422-430.
|