Acta Geodaetica et Cartographica Sinica ›› 2024, Vol. 53 ›› Issue (12): 2268-2281.doi: 10.11947/j.AGCS.2024.20240112
• Geodesy and Navigation • Previous Articles
Received:
2024-03-27
Published:
2025-01-06
Contact:
Qianxin WANG
E-mail:chaohu2014gnss@163.com;wqx@cumt.edu.cn
About author:
HU Chao (1990—), male, PhD, associate professor, majors in satellite geodesy data processing. E-mail: chaohu2014gnss@163.com
Supported by:
CLC Number:
Chao HU, Qianxin WANG. BDS-3/GNSS satellite ultra-rapid clock offsets estimation model with the aid of onboard clock states solution[J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(12): 2268-2281.
Tab. 1
Parameters and model configurations of BDS-3/GNSS ultra-rapid orbit determination[7]"
参数或模型 | 配置 |
---|---|
卫星系统 | BDS-3+GPS+Galileo+GLONASS |
观测模型 | 双频无电离层组合 |
测站数 | 60 |
待估参数 | 轨道、钟差、站坐标、系统偏差、接收机钟差、ERP |
轨道参数 | 初始状态、光压 |
钟差模型 | 白噪声 |
截止高度角/(°) | 7 |
定轨弧长 | 24 h解算+24 h预报 |
采样间隔/s | 300 |
定权策略 | E>30°P=1,E≤30°P=1/2sin(E),E为高度角 |
PCO与PCV | igs14.atx |
模糊度 | 固定解 |
卫星姿态模型 | BDS-3参考文献[ |
重力场 | EGM 2008 |
固体潮模型 | IERS 2010 |
相对论效应 | IERS 2010 |
Tab. 3
Average and mean square error of modelling residuals of different systems and clock types"
卫星系统或原子钟类型 | μ | σ | ||||||
---|---|---|---|---|---|---|---|---|
5 s加密 | 15 s加密 | 30估计 | 30 s内插 | 5 s加密 | 15 s加密 | 30估计 | 30 s内插 | |
GPS | 6.63×10-5 | 3.17×10-5 | 2.37×10-5 | -2.40×10-3 | 3.35×10-2 | 4.99×10-2 | 8.65×10-2 | 1.25×10-1 |
GLONASS | 1.38×10-4 | 4.92×10-5 | 3.22×10-5 | 8.78×10-4 | 2.07×10-2 | 2.91×10-2 | 4.21×10-2 | 1.25×10-1 |
Galileo | 6.86×10-5 | 4.99×10-5 | -5.22×10-6 | 1.27×10-4 | 6.17×10-3 | 6.68×10-3 | 8.55×10-3 | 1.69×10-2 |
BDS-3 | 3.91×10-5 | 1.20×10-5 | -2.41×10-5 | -2.34×10-4 | 7.21×10-3 | 9.78×10-3 | 1.14×10-2 | 1.53×10-2 |
Rb | 9.42×10-5 | 6.62×10-5 | 4.44×10-5 | 9.14×10-4 | 2.88×10-2 | 3.56×10-2 | 9.55×10-2 | 2.12×10-1 |
Cs | 7.26×10-5 | 5.46×10-5 | -5.78×10-5 | 3.67×10-4 | 9.43×10-3 | 1.22×10-2 | 1.67×10-2 | 1.11×10-1 |
PHM | 2.23×10-5 | 3.31×10-5 | 3.33×10-5 | -1.68×10-4 | 6.44×10-3 | 7.36×10-3 | 8.65×10-3 | 2.22×10-2 |
Tab. 4
Performances of PPP solutions with one-month observations and its improvement"
PPP方案 | 定位精度/cm | 收敛时间/min | |||||
---|---|---|---|---|---|---|---|
E | N | U | E | N | U | ||
BDS-3 | 5 min超快速钟差 | 3.79 | 2.69 | 5.86 | 49.5 | 36 | 59.5 |
30 s估计钟差 | 2.76 | 2.44 | 5.16 | 44.0 | 32.5 | 50.0 | |
提升率/(%) | 27.2 | 9.3 | 11.9 | 11.1 | 9.7 | 16.0 | |
5 min钟差+状态 | 2.64 | 2.50 | 5.22 | 45.5 | 30.5 | 48.5 | |
提升率/(%) | 30.3 | 7.1 | 10.9 | 8.1 | 15.3 | 18.5 | |
30 s WUM钟差 | 1.41 | 0.96 | 3.21 | 22 | 26.5 | 25.0 | |
BDS-3+GPS | 5 min超快速钟差 | 2.98 | 2.62 | 5.56 | 45.5 | 32.0 | 55.0 |
30 s估计钟差 | 2.61 | 1.68 | 4.99 | 34.5 | 29.0 | 42.5 | |
提升率/(%) | 12.4 | 35.9 | 10.3 | 24.2 | 9.4 | 22.7 | |
5 min钟差+状态 | 2.66 | 1.98 | 5.21 | 38.5 | 27.5 | 44.0 | |
提升率/(%) | 10.7 | 24.4 | 6.3 | 15.4 | 14.1 | 20.0 | |
30 s WUM钟差 | 1.16 | 0.93 | 2.38 | 19.5 | 20.0 | 20.5 | |
四系统 | 5 min超快速钟差 | 2.37 | 1.99 | 2.05 | 39.0 | 27.0 | 36.0 |
30 s估计钟差 | 2.33 | 1.87 | 1.41 | 21.5 | 18.0 | 22.0 | |
提升率/(%) | 1.7 | 6.0 | 31.2 | 44.9 | 33.3 | 38.9 | |
5 min钟差+状态 | 2.33 | 1.86 | 1.52 | 23.5 | 17.5 | 24.0 | |
提升率/(%)30 s WUM钟差 | 1.70.81 | 6.5 0.51 | 25.9 1.01 | 39.7 17.0 | 35.2 9.0 | 33.3 19.5 |
Tab. 6
Performances of BDS-3-only and four-system PPP with different predicted clock offsets"
PPP方案 | 钟差预报基础序列 | 定位精度/cm | 收敛时间/min | ||||
---|---|---|---|---|---|---|---|
E | N | U | E | N | U | ||
BDS-3 | 策略一 | 2.84 | 3.02 | 5.88 | 56.0 | 42.0 | 58.5 |
策略二 | 2.56 | 2.88 | 5.43 | 50.5 | 37.5 | 56.0 | |
提升率 | 9.9% | 4.6% | 7.7% | 9.8% | 10.7% | 4.3% | |
四系统 | 策略一 | 2.54 | 2.59 | 4.78 | 31.0 | 30.5 | 44.5 |
策略二 | 2.38 | 2.24 | 4.24 | 26.5 | 30.0 | 39.0 | |
提升率 | 6.3% | 13.5% | 11.3% | 14.5% | 1.6% | 12.4% |
[1] | 杨元喜, 任夏, 贾小林, 等. 以北斗系统为核心的国家安全PNT体系发展趋势[J]. 中国科学:地球科学, 2023, 53(5): 917-927. |
YANG Yuanxi, REN Xia, JIA Xiaolin, et al. Development trends of the national secure PNT system based on BDS[J]. Science China: Earth Sciences, 2023, 53(5): 917-927. | |
[2] | ZUMBERGE J, HEFLIN M, JEFFERSON D, et al. Precise point positioning for the efficient and robust analysis of GPS data from large networks[J]. Journal of Geophysical Research, 1997, 102(B3): 5005-5017. |
[3] | LI Xingxing, LI Yuhao, XIONG Yun, et al. An efficient strategy for multi-GNSS real-time clock estimation based on the undifferenced method[J]. GPS Solutions, 2022, 27(1): 23. |
[4] | CHEN Guo, GUO Jing, GENG Tao, et al. Multi-GNSS orbit combination at Wuhan University: strategy and preliminary products[J]. Journal of Geodesy, 2023, 97(5): 41. |
[5] |
陈康慷, 徐天河, 杨玉国, 等. iGMAS GNSS钟差产品综合与评估[J]. 测绘学报, 2016, 45(S2): 46-53. DOI:.
doi: 10.11947/j.AGCS.2016.F025 |
CHEN Kangkang, XU Tianhe, YANG Yuguo, et al. Combination and assessment of GNSS clock products from iGMAS analysis centers[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(S2): 46-53. DOI:.
doi: 10.11947/j.AGCS.2016.F025 |
|
[6] | LI X, WANG Q, WU J, et al. Multi-GNSS products and services at iGMAS Wuhan innovation application center: strategy and evaluation[J]. Satellite Navigation, 2022, 3: 20. |
[7] |
胡超, 王潜心. 顾及BDS-3星钟约束的GNSS超快速轨道钟差解算方法[J]. 测绘学报, 2024, 53(3): 413-424. DOI:.
doi: 10.11947/j.AGCS.2024.20230168 |
HU Chao, WANG Qianxin. GNSS ultra-rapid orbit and clock offset estimation method with the aid of the constraint of BDS-3 onboard clock[J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(3): 413-424. DOI:.
doi: 10.11947/j.AGCS.2024.20230168 |
|
[8] | GUO Jing, WANG Chen, CHEN Guo, et al. BDS-3 precise orbit and clock solution at Wuhan University: status and improvement[J]. Journal of Geodesy, 2023, 97: 15. |
[9] | ZENG Ping, ZHANG Zhetao, WEN Yuanlan, et al. Properties of multi-GNSS uncalibrated phase delays with considering satellite systems, receiver types, and network scales[J]. Satellite Navigation, 2023, 4: 19. |
[10] | FU W, CHEN R, CUI Y. A computationally efficient prior quality control approach for multi-GNSS real-time satellite clock estimation[J]. GPS Solutions, 2023, 27: 177. |
[11] | CHEN Hua, JIANG Weiping, GE Maorong, et al. An enhanced strategy for GNSS data processing of massive networks[J]. Journal of Geodesy, 2014, 88(9): 857-867. |
[12] |
陈良, 胡志刚, 耿长江, 等. GNSS增强系统中精密实时钟差高频估计及应用研究[J]. 测绘学报, 2016, 45(S2): 12-21. DOI:.
doi: 10.11947/j.AGCS.2016.F021 |
CHEN Liang, HU Zhigang, GENG Changjiang, et al. Study on a high-frequency multi-GNSS real-time precise clock estimation algorithm and application in GNSS augment system[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(S2): 12-21. DOI:.
doi: 10.11947/j.AGCS.2016.F021 |
|
[13] | CAO X, KUANG K, GE Y, et al. An efficient method for undifferenced BDS-2/BDS-3 high-rate clock estimation[J]. GPS Solutions, 2022, 26: 66. |
[14] | GONG Xiaopeng, GU Shengfeng, LOU Yidong, et al. An efficient solution of real-time data processing for multi-GNSS network[J]. Journal of Geodesy, 2018, 92(7): 797-809. |
[15] | 赵齐乐, 许小龙, 马宏阳, 等. GNSS实时精密轨道快速计算方法及服务[J]. 武汉大学学报(信息科学版), 2018, 43(12): 2157-2166. |
ZHAO Qile, XU Xiaolong, MA Hongyang, et al. Real-time precise orbit determination of BDS/GNSS: method and service[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 2157-2166. | |
[16] | CAO Y, HUANG G, XIE S, et al. An evaluation method of GPS satellite clock in-orbit with periodic terms deducted[J]. Measurement, 2023, 214: 112765. |
[17] | HU Chao, WANG Zhongyuan, LÜ Weicai, et al. A method for updating GNSS satellite ultra-rapid clock offsets and orbits with the aid of a covariance intersection algorithm[J]. Acta Geodaetica et Geophysica, 2022, 57(1): 63-84. |
[18] | SHI Chuang, GUO Shiwei, GU Shengfeng, et al. Multi-GNSS satellite clock estimation constrained with oscillator noise model in the existence of data discontinuity[J]. Journal of Geodesy, 2019, 93(4): 515-528. |
[19] | PENG Y, LOU Y, GONG X, et al. Real-time clock prediction of multi-GNSS satellites and its application in precise point positioning[J]. Advances in Space Research, 2019, 64: 1445-1454. |
[20] | GU Shengfeng, MAO Feiyu, GONG Xiaopeng, et al. Improved short-term stability for real-time GNSS satellite clock estimation with clock model[J]. Journal of Geodesy, 2023, 97(6): 61. |
[21] |
杨宇飞, 杨元喜, 陈金平, 等. 北斗三号星座拟稳钟差测定及其预报[J]. 测绘学报, 2021, 50(12): 1728-1737. DOI:.
doi: 10.11947/j.AGCS.2021.20210084 |
YANG Yufei, YANG Yuanxi, CHEN Jinping, et al. Pseudo-stable constellation bias error of BDS-3 and its high-precision prediction[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(12): 1728-1737. DOI:.
doi: 10.11947/j.AGCS.2021.20210084 |
|
[22] | LOU Yidong, DAI Xiaolei, GONG Xiaopeng, et al. A review of real-time multi-GNSS precise orbit determination based on the filter method[J]. Satellite Navigation, 2022, 3: 15. |
[23] |
毛悦, 宋小勇, 张清华, 等. BDS-3卫星钟在轨性能评估与分析[J]. 测绘学报, 2023, 52(3): 349-356. DOI:.
doi: 10.11947/j.AGCS.2023.20220100 |
MAO Yue, SONG Xiaoyong, ZHANG Qinghua, et al. Performance evaluation and comparison of on-orbit satellite clocks for BDS-3[J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(3): 349-356. DOI:.
doi: 10.11947/j.AGCS.2023.20220100 |
|
[24] | YANG Y, MAO Y, SUN B. Basic performance and future developments of BeiDou global navigation satellite system[J]. Satellite Navigation, 2020, 1: 1. |
[25] | KOELEMEIJ J, DUN H, DIOUF C, et al. A hybrid optical-wireless network for decimetre-level terrestrial positioning[J]. Nature, 2022, 611(7936): 473-478. |
[26] | WANG K, EI-MOWAFY A, YANG X. LEO satellite clock modeling and its benefits for LEO kinematic POD[J]. Remote Sensing, 2023, 15: 3149. |
[27] | GE Maorong, CHEN Junping, DOUŠA J, et al. A computationally efficient approach for estimating high-rate satellite clock corrections in real time[J]. GPS Solutions, 2012, 16(1): 9-17. |
[28] | GE Yulong, WANG Qing, WANG Yong, et al. A new receiver clock model to enhance BDS-3 real-time PPP time transfer with the PPP-B2b service[J]. Satellite Navigation, 2023, 4: 8. |
[29] | LI Xingxing, CHEN Xinghan, GE Maorong, et al. Improving multi-GNSS ultra-rapid orbit determination for real-time precise point positioning[J]. Journal of Geodesy, 2018, 93(3): 1-20. |
[30] | 潘雄, 赵万卓, 黄伟凯, 等. 基于优化自注意力神经网络的卫星钟差短期预报[J]. 中国惯性技术学报, 2023, 31(11): 1092-1101. |
PAN Xiong, ZHAO Wanzhuo, HUANG Weikai, et al. Short-term prediction of satellite clock bias based on improved self-attention model[J]. Journal of Chinese Inertial Technology, 2023, 31(11): 1092-1101. | |
[31] | HE Shaofeng, LIU Jiulong, ZHU Xiangwei, et al. Research on modeling and predicting of BDS-3 satellite clock bias using the LSTM neural network model[J]. GPS Solutions, 2023, 27: 108. |
[32] | 郭海荣. 导航卫星原子钟时频特性分析理论与方法研究[D]. 郑州: 信息工程大学, 2006. |
GUO Hairong. Study on the analysis theories and algorithm of the time and frequency characterization for atomic clocks of navigation satellites[D]. Zhengzhou: Information Engineering University, 2006. | |
[33] |
耿江辉, 常华, 郭将, 等. 面向城市复杂环境的3种多频多系统GNSS单点高精度定位方法及性能分析[J]. 测绘学报, 2020, 49(1): 1-13. DOI:
doi: 10.11947/j.AGCS.2020.20190106 |
GENG Jianghui, CHANG Hua, GUO Jiang, et al. Three multi-frequency and multi-system GNSS high-precision point positioning methods and their performance in complex urban environment[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(1): 1-13. DOI:.
doi: 10.11947/j.AGCS.2020.20190106 |
[1] | WANG Qianxin, HU Chao, WANG Zejie. Single station velocity determination of BDS-3 carrier phase observations with the constraints of heading angle [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(6): 871-883. |
[2] | GAO Weiguang, MIAO Weikai, CHEN Gucang, JIA Song. Evaluation and analysis of stochastic modeling of BeiDou GEO/IGSO/MEO satellite observation [J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(12): 1511-1522. |
[3] | PAN Zongpeng, CHAI Hongzhou, LIU Jun, DONG Bingquan, LIU Ming, WANG Huarun. GPS Partial Ambiguity Resolution Method for Zero-difference Precise Point Positioning [J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(11): 1210-1218. |
[4] | ZHAI Guojun BIAN Guanglang SUN Junliang LI Liandeng XIANG Shulin TONG Yan. The Precise Flight Trajectory Tracking Approach of Altitude Vehicle in Unpowered Phase [J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(11): 1109-1117. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 81
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 100
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||