Acta Geodaetica et Cartographica Sinica ›› 2025, Vol. 54 ›› Issue (4): 621-635.doi: 10.11947/j.AGCS.2025.20240468
• Review • Previous Articles
Huayi WU1,2(), Zhangxiao SHEN1, Shuyang HOU1(
), Jianyuan LIANG1, Anqi ZHAO1, Haoyue JIAO3, Zhipeng GUI4, Xuefeng GUAN1
Received:
2024-10-08
Published:
2025-05-30
Contact:
Shuyang HOU
E-mail:wuhuayi@whu.edu.cn;whuhsy@whu.edu.cn
About author:
WU Huayi (1966—), male, PhD, professor, majors in geographic information service, analysis, mining and large language models. E-mail: wuhuayi@whu.edu.cn
Supported by:
CLC Number:
Huayi WU, Zhangxiao SHEN, Shuyang HOU, Jianyuan LIANG, Anqi ZHAO, Haoyue JIAO, Zhipeng GUI, Xuefeng GUAN. Large language model-driven GIS analysis: methods, applications, and prospects[J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(4): 621-635.
Tab. 1
The evolution of GIS analysis"
GIS分析发展阶段 | 经验科学 | 数学机理 | 计算模拟 | 数据驱动 | AI驱动 |
---|---|---|---|---|---|
分析特征 | 纸质地图量测 | 计量地理学分析 | 基于工具的空间建模分析 | 时空大数据挖掘与预测分析 | 智能推理与自动化分析 |
数据特征 | 少量、单一观测数据 | 结构化数据 | 非结构化数据 | 异构数据 | 多模态数据 |
需求特征 | 定性 | 定量 | 定位、拓扑 | 复杂地理过程建模 | 动态决策与实时适配 |
模型特征 | — | 统计模型 | 空间分析模型 | 基于数据训练模型 | 生成式大模型 |
典型方法 | 实地观测与人工分析 | 空间插值、空间聚类 | 缓冲区分析、叠置分析 | 深度学习、机器学习 | 提示工程、检索增强生成、模型微调、智能体 |
典型案例 | 传染病疫情分布推断 | 人口密度趋势、生态区划 | 洪水淹没、设施选址 | 交通预测、城市功能区识别 | 知识问答、知识抽取、时空推理、分析建模 |
Tab. 2
Typical large language models for GIS analysis"
模型名称 | 预训练模型 | 类别 | 任务场景 | 描述 |
---|---|---|---|---|
K2[ | LLaMA2-7B | 1、2 | 知识问答 | 利用地球科学领域的专用语料库进行微调,提升了对地球科学知识的理解、推理和应用能力 |
GeoGalactica[ | Galactica-30B | 1、2 | 知识问答 | 利用GeoSignal-v2数据集构建的地球科学专用大语言模型,提升了在地质学、地球物理、气象学等领域的知识问答、理解与推理能力 |
BB-GeoGPT[ | LLaMA2-7B | 1、2 | 知识问答知识抽取时空推理 | 通过GIS领域专业语料库微调,优化了基础模型在地理空间知识理解、地理问题问答和空间关系抽取等任务中的性能 |
ClimateGPT[ | LLaMA2-7B、13B、70B | 1、2 | 知识问答时空推理 | 通过模型微调和检索增强生成,整合自然、经济与社会科学等领域知识,为气候变化研究和决策提供跨学科多语言问答服务 |
OceanGPT[ | MiniCPM-2B、LLaMA2-7B、LLaMA3-8B | 1、2 | 知识问答知识抽取时空推理 | 面向海洋科学任务,具备指令生成、知识推理和初步的具身智能能力,可支持海洋机器人在海洋工程任务中的规划与操作 |
GeoCode-GPT[ | Code-LLaMA-7B | 1、2 | 分析建模 | 通过地理空间代码语料库微调,实现多平台多编程语言地理空间代码生成任务,同时建立GeoCode-Eval地理空间代码生成能力评价标准 |
ChatGeoAI[ | LLaMA2 | 2 | 分析建模 | 可通过自然语言查询自动生成并执行PyQGIS脚本,支持非专业用户使用GIS工具 |
Typhoon-T5[ | T5-large | 2 | 知识问答时空推理 | 整合台风气象知识、灾害案例和灾害管理数据的台风灾害知识问答和预测系统 |
LLaMA-CoPB[ | LLaMA3-8B | 2 | 时空推理 | 结合“计划行为理论”设计的时空推理模型,可用于移动行为生成 |
UrbanGPT[ | ChatGLM3-6B-Base | 2 | 时空推理 | 城市动态预测设计专用大模型,能够在零样本场景下捕捉复杂的时空关系,服务于交通流量、人口迁移和犯罪率等预测任务 |
Tab. 3
Typical datasets used in large language models for GIS analysis"
用途 | 名称 | 时间 | 应用场景 | 获取方式 | 描述 |
---|---|---|---|---|---|
知识语料库 | GeoLLM[ | 2024-02 | 时空推理 | 开源获取 | 基于OpenStreetMap数据,生成地理坐标与社会经济信息映射提示的地理空间知识,应用于人口密度和经济状况等GIS分析任务 |
GeoQAMap[ | 2023-09 | 知识问答 | 开源获取 | 基于Wikidata知识库中的地理实体及其相关信息,增强地理问题的自动解答和地图可视化的能力 | |
Geo-FuB[ | 2024-10 | 分析建模 | 规则匹配 | 基于154 075条Google Earth Engine脚本,通过抽象语法树和Apriori算法提取函数算子组合,并进行语义映射,构建操作-函数知识库 | |
文献[ | 2023-06 | 知识问答 | 开源获取 | 包含219个实体和236种关系类型的洪水知识图谱,以及定义操作关系和输入输出数据结构的GIS知识图谱 | |
预训练集 | BB-GeoPT[ | 2024-06 | 分析建模 | 开源获取 | 包含2499篇GIS论文和24 408条Wikipedia页面,涵盖GIS领域的理论和操作内容 |
GeoCode-PT[ | 2024-10 | 分析建模 | 开源获取 | 包含275 374段代码、10 190个操作符、853个数据集知识条目,涉及多语言地理代码示例和操作说明,用于提升地理空间代码生成能力 | |
GeoCorpus[ | 2024-01 | 知识问答 | 开源获取 | 包含5 980 293篇地球科学相关论文,旨在提高模型在地球科学任务中的理解和生成能力 | |
TransGPT-PT[ | 2024-02 | 时空推理 | 开源获取 | 包含9760万词元和超过3000张图像的交通领域文献和报告,用于提升模型在交通分析与问答任务中的专业能力 | |
指令微调数据集 | GeoCode-SFT[ | 2024-10 | 分析建模 | 大语言模型合成 | 使用结构化遍历算法和Self-instruct框架,生成502 047条指令数据,涵盖运算符、数据集、平台语言理解和代码总结,用于增强模型的地理空间代码生成能力 |
ClimateIQA[ | 2024-06 | 知识问答 | 规则匹配 | 包含8760张气象热图和254 040个问答对,旨在训练视觉-语言模型识别极端天气事件,并准确解释气象热图 | |
MMRS-1M[ | 2024-01 | 时空推理 | 专家经验标注 | 整合了34个现有遥感数据集及百万级图文数据对,旨在提升模型在遥感任务上的通用性与推理能力 | |
CityInstruction[ | 2024-06 | 时空推理 | 开源获取 | 包含34万条通用指令数据和25万条城市领域数据,涵盖实体认知、空间探索、空间推理,旨在提升大语言模型的城市空间认知与任务解决能力 | |
评估集 | OceanBench[ | 2024-10 | 知识问答 | 规则匹配 | 包含15个海洋相关任务,涵盖问答、分类、生成和推理等多种任务类型,旨在评估大语言模型在海洋科学任务上的执行能力 |
PPNL[ | 2024-10 | 时空推理 | 规则匹配 | 包含64 080个单目标和123 600个多目标路径规划任务实例,旨在评估大语言模型的时空推理与规划能力 | |
GeoCode-Bench[ | 2024-10 | 分析建模 | 大语言模型合成 | 包含5000道选择题、1500道填空题、1500道判断题及1000道主观编程任务,旨在评估大语言模型生成地理空间代码的能力 | |
VRSBench[ | 2024-06 | 时空推理 | 专家经验标注 | 包含29 614张遥感影像、52 472个目标描述句、123 221个问答对和详细图像描述,旨在评估和提升视觉-语言模型在遥感影像理解任务上的性能 | |
工具集 | LLM-Find[ | 2024-08 | 知识抽取 | 专家经验标注 | 支持6种数据源,提供元数据及技术支持,旨在通过自然语言指令实现地理数据的自动检索、下载和分析 |
ShapefileGPT[ | 2024-10 | 分析建模 | 专家经验标注 | 专门用于Shapefile处理的27个功能库,涵盖几何操作、空间查询和拓扑分析等任务 | |
POIGPT[ | 2024-06 | 知识抽取 | 开源获取 | 通过集成命名实体识别模块与Google Map API调用工具,识别并定位社交媒体文本中的兴趣点 | |
MapGPT[ | 2024-10 | 分析建模 | 开源获取 | 包含68种专业制图工具,支持通过自然语言交互生成和优化地图 |
[1] | 吴信才. 地理信息系统的基本技术与发展动态[J]. 地球科学, 1998, 23(4): 329-333. |
WU Xincai. Basic technology and development of geographic information system[J]. Earth Science, 1998, 23(4): 329-333. | |
[2] | 李德仁. 论21世纪遥感与GIS的发展[J]. 武汉大学学报(信息科学版), 2003, 28(2): 127-131. |
LI Deren. Towards the development of remote sensing and GIS in the 21st century[J]. Geomatics and Information Science of Wuhan University, 2003, 28(2): 127-131. | |
[3] | 闾国年, 袁林旺, 陈旻, 等. 地理信息学科发展的思考[J]. 地球信息科学学报, 2024, 26(4): 767-778. |
LÜ Guonian, YUAN Linwang, CHEN Min, et al. Reflections on the development of the geographic information discipline[J]. Journal of Geo-Information Science, 2024, 26(4): 767-778. | |
[4] | 苏世亮, 王卓伦, 何深静, 等. 社会地理计算的理论逻辑与研究范式及展望[J]. 地理学报, 2024, 79(1): 187-205. |
SU Shiliang, WANG Zhuolun, HE Shenjing, et al. Rethinking the theoretical genesis, research paradigm and research agenda of Geo-computational Social Sciences[J]. Acta Geographica Sinica, 2024, 79(1): 187-205. | |
[5] | 杜清运, 王涛, 任福. 试论地理信息科学的基础学科范式[J]. 武汉大学学报(信息科学版), 2022, 47(12): 2003-2006, 2037. |
DU Qingyun, WANG Tao, REN Fu. On the basic discipline paradigm of geographic information science[J]. Geomatics and Information Science of Wuhan University, 2022, 47(12): 2003-2006, 2037. | |
[6] | 华一新, 赵鑫科, 张江水. 地理信息系统研究新范式[J]. 地球信息科学学报, 2023, 25(1): 15-24. |
HUA Yixin, ZHAO Xinke, ZHANG Jiangshui. New paradigm of geographic information systems research[J]. Journal of Geo-Information Science, 2023, 25(1): 15-24. | |
[7] | 李新, 郑东海, 冯敏, 等. 信息地理学:信息革命重塑地理学[J]. 中国科学:地球科学, 2022, 52(2): 370-373. |
LI Xin, ZHENG Donghai, FENG Min, et al. Information geography: the information revolution reshapes geography[J]. Science China Earth Sciences, 2022, 65(2): 379-382. | |
[8] | 傅伯杰. 地理学:从知识、科学到决策[J]. 地理学报, 2017, 72(11): 1923-1932. |
FU Bojie. Geography: from knowledge, science to decision making support[J]. Acta Geographica Sinica, 2017, 72(11): 1923-1932. | |
[9] | TEAM G, ANIL R, BORGEAUD S, et al. Gemini: a family of highly capable multimodal models[EB/OL]. [2023-11-01]. https://arxiv.org/abs/2312.11805v4. |
[10] | TOUVRON H, LAVRIL T, IZACARD G, et al. LLaMA: open and efficient foundation language models[EB/OL]. [2023-03-01]. https://arxiv.org/abs/2302.13971v1. |
[11] | BAI Jinze, BAI Shuai, CHU Yunfei, et al. Qwen technical report[EB/OL]. [2023-03-11]. https://arxiv.org/abs/2309.16609v1. |
[12] | SUN Yu, WANG Shuohuan, LI Yukun, et al. ERNIE 2.0: a continual pre-training framework for language understanding[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(5): 8968-8975. |
[13] | WANG Hanchen, FU Tianfan, DU Yuanqi, et al. Scientific discovery in the age of artificial intelligence[J]. Nature, 2023, 620(7972): 47-60. |
[14] | 李宇航, 徐志伟, 刘燕华, 等. 人工智能时代的地理科学前沿问题探析[J]. 地理学报, 2024, 79(10): 2409-2424. |
LI Yuhang, XU Zhiwei, LIU Yanhua, et al. AI for geographical sciences: the frontiers[J]. Acta Geographica Sinica, 2024, 79(10): 2409-2424. | |
[15] | LI Xin, GUO Yanlong. Paradigm shifts from data-intensive science to robot scientists[J]. Science Bulletin, 2025, 70(1): 14-18. |
[16] |
王密, 程昫, 潘俊, 等. 大模型赋能智能摄影测量:现状、挑战与前景[J]. 测绘学报, 2024, 53(10): 1955-1966. DOI:.
doi: 10.11947/j.AGCS.2024.20240068 |
WANG Mi, CHENG Xu, PAN Jun, et al. Large models enabling intelligent photogrammetry: status, challenges and prospects[J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(10): 1955-1966. DOI:.
doi: 10.11947/j.AGCS.2024.20240068 |
|
[17] |
燕琴, 顾海燕, 杨懿, 等, 智能遥感大模型研究进展与发展方向[J]. 测绘学报, 2024, 53(10): 1967-1980. DOI:.
doi: 10.11947/j.AGCS.2024.20240053 |
YAN Qin, GU Haiyan, YANG Yi, et al, Research progress and trend of intelligent remote sensing large model[J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(10): 1967-1980. DOI:.
doi: 10.11947/j.AGCS.2024.20240053 |
|
[18] | 张良培, 张乐飞, 袁强强. 遥感大模型:进展与前瞻[J]. 武汉大学学报(信息科学版), 2023, 48(10): 1574-1581. |
ZHANG Liangpei, ZHANG Lefei, YUAN Qiangqiang. Large remote sensing model: progress and prospects[J]. Geomatics and Information Science of Wuhan University, 2023, 48(10): 1574-1581. | |
[19] | 杨必胜, 陈一平, 邹勤. 从大模型看测绘时空信息智能处理的机遇和挑战[J]. 武汉大学学报(信息科学版), 2023, 48(11): 1756-1768. |
YANG Bisheng, CHEN Yiping, ZOU Qin. Opportunities and challenges of spatiotemporal information intelligent processing of surveying and mapping in the era of large models[J]. Geomatics and Information Science of Wuhan University, 2023, 48(11): 1756-1768. | |
[20] | CHEN Min, QIAN Zhen, BOERS N, et al. Collaboration between artificial intelligence and Earth science communities for mutual benefit[J]. Nature Geoscience, 2024, 17(10): 949-952. |
[21] | ZHAO Tianjie, WANG Sheng, OUYANG Chaojun, et al. Artificial intelligence for geoscience: progress, challenges, and perspectives[J]. The Innovation, 2024, 5(5): 100691. |
[22] | ZHOU Chunting, LIU Pengfei, XU Puxin, et al. LIMA: less is more for alignment[EB/OL]. [2023-10-10]. https://arxiv.org/abs/2305.11206v1. |
[23] | ZHANG Yifan, WEI Cheng, HE Zhengting, et al. GeoGPT: an assistant for understanding and processing geospatial tasks[J]. International Journal of Applied Earth Observation and Geoinformation, 2024, 131: 103976. |
[24] | ROBERTS J, LÜDDECKE T, DAS S, et al. GPT4GEO: how a language model sees the world's geography[EB/OL]. [2023-12-10]. https://arxiv.org/abs/2306.00020v1. |
[25] | MAI Gengchen, CUNDY C, CHOI K, et al. Towards a foundation model for geospatial artificial intelligence[C]//Proceedings of the 30th International Conference on Advances in Geographic Information Systems. Seattle: ACM Press, 2022: 1-4. |
[26] | MANVI R, KHANNA S, MAI Gengchen, et al. GeoLLM: extracting geospatial knowledge from large language models[EB/OL]. [2023-06-12]. https://arxiv.org/abs/2310.06213v2. |
[27] | ZHANG Zheng, AMIRI H, LIU Zhenke, et al. Large language models for spatial trajectory patterns mining[EB/OL]. [2023-06-10]. https://arxiv.org/abs/2310.04942v1. |
[28] | BENEDUCE C, LEPRI B, LUCA M. Large language models are zero-shot next location predictors[EB/OL]. [2024-10-10]. https://arxiv.org/abs/2405.20962v3. |
[29] | FENG Shanshan, LYU Haoming, LI Fan, et al. Where to move next: zero-shot generalization of LLMs for next POI recommendation[C]//Proceedings of 2024 IEEE Conference on Artificial Intelligence. Singapore: IEEE, 2024: 1530-1535. |
[30] | NING Huan, LI Zhenlong, AKINBOYEWA T, et al. An autonomous GIS agent framework for geospatial data retrieval[EB/OL]. [2024-12-10]. https://arxiv.org/abs/2407.21024v2. |
[31] | GAO Yunfan, XIONG Yun, GAO Xinyu, et al. Retrieval-augmented generation for large language models: a survey[EB/OL]. [2023-11-11]. https://arxiv.org/abs/2312.10997v5. |
[32] | THULKE D, GAO Yingbo, PELSER P, et al. ClimateGPT: towards AI synthesizing interdisciplinary research on climate change[EB/OL]. [2024-02-10]. https://arxiv.org/abs/2401.09646v1. |
[33] | XIA Yongqi, HUANG Yi, QIU Qianqian, et al. A question and answering service of typhoon disasters based on the T5 large language model[J]. ISPRS International Journal of Geo-Information, 2024, 13(5): 165. |
[34] | FENG Yu, DING Linfang, XIAO Guohui. GeoQAMap-geographic question answering with maps leveraging llm and open knowledge base[C]//Proceedings of the 12th International Conference on Geographic Information Science. [S.l.]: IEEE, 2023: 1-7. |
[35] | SHEKHAR S, PAPALEXAKIS V, GAO J, et al. Geospatial topological relation extraction from text with knowledge augmentation[C]//Proceedings of 2024 SIAM International Conference on Data Mining. Philadelphia: Society for Industrial and Applied Mathematics, 2024. |
[36] |
HOU Shuyang, ZHAO Anqi, LIANG Jianyuan, et al. Geo-Fub: a method for constructing an operator-function knowledge base for geospatial code generation tasks using large language models[EB/OL]. [2024-10-30]. https://www.ssrn.com/abstract=4951342. DOI:.
doi: 10.2139/ssrn.4951342 |
[37] | ZHU Jun, DANG Pei, CAO Yungang, et al. A flood knowledge-constrained large language model interactable with GIS: enhancing public risk perception of floods[J]. International Journal of Geographical Information Science, 2024, 38(4): 603-625. |
[38] |
吴华意, 赵安琪, 梁健源, 等. 面向地学分析AI建模的地理信息服务层次网络模型[J]. 测绘学报, 2024, 53(11): 2053-2063. DOI:.
doi: 10.11947/j.AGCS.2024.20240109 |
WU Huayi, ZHAO Anqi, LIANG Jianyuan, et al. Five-layer hierarchical network (5-HiNet) of geospatial information service for AIGC of geographic analysis model[J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(11): 2053-2063. DOI:.
doi: 10.11947/j.AGCS.2024.20240109 |
|
[39] | DENG Cheng, ZHANG Tianhang, HE Zhongmou, et al. K2: a foundation language model for geoscience knowledge understanding and utilization[C]//Proceedings of the 17th ACM International Conference on Web Search and Data Mining. Merida: ACM Press, 2024: 161-170. |
[40] | ZHANG Yifan, WANG Zhiyun, HE Zhengting, et al. BB-GeoGPT: a framework for learning a large language model for geographic information science[J]. Information Processing & Management, 2024, 61(5): 103808. |
[41] | GLM T, ZENG Aohan. ChatGLM: a family of large language models from GLM-130B to GLM-4 all tools[EB/OL]. [2023-10-15]. https://arxiv.org/abs/2406.12793v2. |
[42] | TAYLOR R, KARDAS M, CUCURULL G, et al. Galactica: a large language model for science[EB/OL]. [2023-11-05]. https://arxiv.org/abs/2211.09085v1. |
[43] | LIN Zhouhan, DENG Cheng, ZHOU Le, et al. GeoGalactica: a scientific large language model in geoscience[EB/OL]. [2023-12-10]. https://arxiv.org/abs/2401.00434v2. |
[44] | BI Zhen, ZHANG Ningyu, XUE Yida, et al. OceanGPT: a large language model for ocean science tasks[EB/OL]. [2023-10-11]. https://arxiv.org/abs/2310.02031v8. |
[45] | HOU Shuyang, SHEN Zhangxiao, ZHAO Anqi, et al. GeoCode-GPT: a large language model for geospatial code generation[J]. International Journal of Applied Earth Observation and Geoinformation, 2025, 138: 104456. |
[46] | MANSOURIAN A, OUCHEIKH R. ChatGeoAI: enabling geospatial analysis for public through natural language, with large language models[J]. ISPRS International Journal of Geo-Information, 2024, 13(10): 348. |
[47] | SHAO Chenyang, XU Fengli, FAN Bingbing, et al. Chain-of-planned-behaviour workflow elicits few-shot mobility generation in LLMs[EB/OL]. [2024-11-01]. https://arxiv.org/abs/2402.09836v2. |
[48] | LI Zhonghang, XIA Lianghao, TANG Jiabin, et al. UrbanGPT: spatio-temporal large language models[C]//Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. Barcelona: ACM Press, 2024: 5351-5362. |
[49] | WANG Lei, MA Chen, FENG Xueyang, et al. A survey on large language model based autonomous agents[J]. Frontiers of Computer Science, 2024, 18(6): 186345. |
[50] | LI Zhenlong, NING Huan. Autonomous GIS: the next-generation AI-powered GIS[J]. International Journal of Digital Earth, 2023, 16(2): 4668-4686. |
[51] | 冯丽妃. 十问“坤元”大模型[N]. 中国科学报, 2024-09-20: 001. |
FENG Lifei. Ten questions about sigma geography[N]. China Science Daily, 2024-09-20: 001. | |
[52] | SCHUMANN R, ZHU Wanrong, FENG Weixi, et al. VELMA: verbalization embodiment of LLM agents for vision and language navigation in street view[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2024, 38(17): 18924-18933. |
[53] | XU Fengli, ZHANG Jun, GAO Chen, et al. Urban generative intelligence (UGI): a foundational platform for agents in embodied city environment[EB/OL]. [2024-11-01]. https://arxiv.org/abs/2312.11813v1. |
[54] | LIN Qingming, HU Rui, LI Huaxia, et al. ShapefileGPT: a multi-agent large language model framework for automated shapefile processing[EB/OL]. [2024-10-23]. https://arxiv.org/abs/2410.12376v2. |
[55] | ZHOU Zhilun, LIN Yuming, JIN Depeng, et al. Large language model for participatory urban planning[EB/OL]. [2024-10-01]. http://arxiv.org/abs/2402.17161. |
[56] | HU Xuke, KERSTEN J, KLAN F, et al. Toponym resolution leveraging lightweight and open-source large language models and geo-knowledge[J]. International Journal of Geographical Information Science, 2024, 4: 1-28. |
[57] | LIU Zilong, JANOWICZ K, CURRIER K, et al. Measuring geographic diversity of foundation models with a natural language-based geo-guessing experiment on GPT-4[J]. AGILE: GIScience Series, 2024, 5: 1-7. |
[58] | YAN Yibo, LEE J. GeoReasoner: reasoning on geospatially grounded context for natural language understanding[EB/OL]. [2024-11-10]. https://arxiv.org/abs/2408.11366v1. |
[59] | LIANG Yuebing, LIU Yichao, WANG Xiaohan, et al. Exploring large language models for human mobility prediction under public events[J]. Computers, Environment and Urban Systems, 2024, 112: 102153. |
[60] | XUE Hao, VOUTHAROJA B P, SALIM F D. Leveraging language foundation models for human mobility forecasting[C]//Proceedings of the 30th International Conference on Advances in Geographic Information Systems. Seattle: ACM Press, 2022: 1-9. |
[61] | ZHANG Siyao, FU Daocheng, LIANG Wenzhe, et al. TrafficGPT: viewing, processing and interacting with traffic foundation models[J]. Transport Policy, 2024, 150: 95-105. |
[62] | LIU Lei, YU Shuo, WANG Runze, et al. How can large language models understand spatial-temporal data?[EB/OL]. [2024-10-01]. https://arxiv.org/abs/2401.14192v2. |
[63] | WANG Jiawei, JIANG Renhe, YANG Chuang, et al. Large language models as urban residents: an LLM agent framework for personal mobility generation[EB/OL]. [2024-03-11]. https://arxiv.org/abs/2402.14744v3. |
[64] | HU Yingjie, MAI Gengchen, CUNDY C, et al. Geo-knowledge-guided GPT models improve the extraction of location descriptions from disaster-related social media messages[J]. International Journal of Geographical Information Science, 2023, 37(11): 2289-2318. |
[65] | KUCKREJA K, DANISH M S, NASEER M, et al. GeoChat: grounded large vision-language model for remote sensing[C]//Proceedings of 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2024: 27831-27840. |
[66] | GUO Haonan, SU Xin, WU Chen, et al. Remote sensing ChatGPT: solving remote sensing tasks with ChatGPT and visual models[C]//Proceedings of 2024 IEEE International Geoscience and Remote Sensing Symposium. Athens: IEEE, 2024: 11474-11478. |
[67] | ZHAN Yang, XIONG Zhitong, YUAN Yuan. SkyEyeGPT: unifying remote sensing vision-language tasks via instruction tuning with large language model[EB/OL]. [2024-02-11]. https://arxiv.org/abs/2401.09712v1. |
[68] | ZHANG Wei, CAI Miaoxin, ZHANG Tong, et al. EarthGPT: a universal multimodal large language model for multisensor image comprehension in remote sensing domain[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5917820. |
[69] | MUHTAR D, LI Zhenshi, GU Feng, et al. LHRS-bot: empowering remote sensing with VGI-enhanced large multimodal language model[EB/OL]. [2024-05-10]. https://arxiv.org/abs/2402.02544v4. |
[70] | AKINBOYEWA T, NING Huan, LESSANI M N, et al. Automated floodwater depth estimation using large multimodal model for rapid flood mapping[J]. Computational Urban Science, 2024, 4(1): 12. |
[71] | AGHZAL M, PLAKU E, YAO Ziyu. Can large language models be good path planners? A benchmark and investigation on spatial-temporal reasoning[EB/OL]. [2023-08-19]. https://arxiv.org/abs/2310.03249v3. |
[72] | ZHU He, ZHANG Wenjia, HUANG Nuoxian, et al. PlanGPT: enhancing urban planning with tailored language model and efficient retrieval[EB/OL]. [2024-02-18]. https://arxiv.org/abs/2402.19273v1. |
[73] | HOJATI M, FEICK R. Large language models: testing their capabilities to understand and explain spatial concepts[C]//Proceedings of the 12th International Conference on Geographic Information Science. [S.l.]: IEEE, 2024: 1-9. |
[74] | CHEN Jian, ZHOU Peilin, HUA Yining, et al. Vision-language models meet meteorology: developing models for extreme weather events detection with heatmaps[EB/OL]. [2024-07-01]. https://arxiv.org/abs/2406.09838v1. |
[75] | NING Yansong, LIU Hao. UrbanKGent: a unified large language model agent framework for urban knowledge graph construction[EB/OL]. [2024-06-05]. https://arxiv.org/abs/2402.06861v2. |
[76] | WANG Yizhong, KORDI Y, MISHRA S, et al. Self-instruct: aligning language models with self-generated instructions[EB/OL]. [2023-11-11]. https://arxiv.org/abs/2212.10560v2. |
[77] | HOU Shuyang, SHEN Zhangxiao, LIANG Jianyuan, et al. Can large language models generate geospatial code?[EB/OL]. [2024-09-11]. https://arxiv.org/abs/2410.09738v2. |
[78] | LI Xiang, DING Jian, ELHOSEINY M. VRSBench: a versatile vision-language benchmark dataset for remote sensing image understanding[EB/OL]. [2024-11-01]. https://arxiv.org/abs/2406.12384v2. |
[79] | YUAN Zhenghang, XIONG Zhitong, MOU Lichao, et al. ChatEarthNet: a global-scale image-text dataset empowering vision-language geo-foundation models[J]. Earth System Science Data, 2025, 17(3): 1245-1263. |
[80] | SINGH S, FORE M, STAMOULIS D. GeoLLM-engine: a realistic environment for building geospatial copilots[C]//Proceedings of 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Seattle: IEEE, 2024: 585-594. |
[81] | FENG Jie, DU Yuwei, LIU Tianhui, et al. CityGPT: empowering urban spatial cognition of large language models[EB/OL]. [2024-10-20]. https://arxiv.org/abs/2406.13948v1. |
[82] | KIM H, LEE S. POI GPT: extracting POI information from social media text data[J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2024, XLVIII-4/W10-2024: 113-118. |
[83] | ZHANG Yifan, HE Zhengting, LI Jingxuan, et al. MapGPT: an autonomous framework for mapping by integrating large language model and cartographic tools[J]. Cartography and Geographic Information Science, 2024, 51(6): 717-743. |
[84] | LI Wenbin, YAO Di, ZHAO Ruibo, et al. STBench: assessing the ability of large language models in spatio-temporal analysis[EB/OL]. [2024-10-12]. https://arxiv.org/abs/2406.19065v1. |
[85] | ROBERTS J, LÜDDECKE T, SHEIKH R, et al. Charting new territories: exploring the geographic and geospatial capabilities of multimodal LLMs[C]//Proceedings of 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Seattle: IEEE, 2024: 554-563. |
[86] | MOONEY P. Towards understanding the geospatial skills of ChatGPT[C]//Proceedings of the 6th ACM SIGSPATIAL International Workshop on AI for Geographic Knowledge Discovery. New York: ACM Press, 2023: 85-94. |
[87] | XU Liuchang, ZHAO Shuo, LIN Qingming, et al. Evaluating large language models on spatial tasks: a multi-task benchmarking study[EB/OL]. [2024-11-15]. https://arxiv.org/abs/2408.14438v4. |
[88] | HOCHMAIR H H, JUHÁSZ L, KEMP T. Correctness comparison of ChatGPT-4, gemini, Claude-3, and copilot for spatial tasks[J]. Transactions in GIS, 2024, 28(7): 2219-2231. |
[89] | HAO Yanan, QI Jin, MA Xiaowen, et al. An LLM-based inventory construction framework of urban ground collapse events with spatiotemporal locations[J]. ISPRS International Journal of Geo-Information, 2024, 13(4): 133. |
[90] | HE Junlin, NIE Tong, MA Wei. Geolocation representation from large language models are generic enhancers for spatio-temporal learning[EB/OL]. [2024-10-05]. https://arxiv.org/abs/2408.12116v2. |
[91] | GUPTA D V, ALI ISHAQUI A S, KADIYALA D K. Geode: a zero-shot geospatial question-answering agent with explicit reasoning and precise spatio-temporal retrieval[EB/OL]. [2024-07-07]. https://arxiv.org/abs/2407.11014v1. |
[92] | LAWSON J R, TRUJILLO-FALCÓN J E, SCHULTZ D M, et al. Pixels and predictions: potential of GPT-4V in meteorological imagery analysis and forecast communication[EB/OL]. [2024-05-16]. https://arxiv.org/abs/2404.15166v2. |
[93] | WANG Peng, WEI Xiang, HU Fangxu, et al. TransGPT: multi-modal generative pre-trained transformer for transportation[EB/OL]. [2024-07-01]. https://arxiv.org/abs/2402.07233v1. |
[94] | GOECKS V G, WAYTOWICH N R. DisasterResponseGPT: large language models for accelerated plan of action development in disaster response scenarios[EB/OL]. [2023-11-11]. https://arxiv.org/abs/2306.17271v1. |
[95] | NUNES R O, SPRITZER A S, BALREIRA D G. An evaluation of large language models for geological named entity recognition[EB/OL]. [2024-11-16]. https://www.researchgate.net/profile/Rafael-Nunes-35/publication/383822506_An_Evaluation_of_Large_Language_Models_for_Geological_Named_Entity_Recognition/links/66dcac42f84dd1716cd713c0/An-Evaluation-of-Large-Language-Models-for-Geological-Named-Entity-Recognition.pdf. |
[96] | LIANG Jianyuan, ZHAO Anqi, HOU Shuyang, et al. A GPT-enhanced framework on knowledge extraction and reuse for geographic analysis models in Google Earth Engine[J]. International Journal of Digital Earth, 2024, 17(1): 2398063. |
[97] | PENG Mingxing, GUO Xusen, CHEN Xianda, et al. LC-LLM: explainable lane-change intention and trajectory predictions with large language models[EB/OL]. [2024-10-30]. https://arxiv.org/abs/2403.18344v2. |
[98] | JIANG Yue, CHAO Qin, CHEN Yile, et al. UrbanLLM: autonomous urban activity planning and management with large language models[EB/OL]. [2024-10-30]. https://arxiv.org/abs/2406.12360v1. |
[99] | WANG Xinglei, FANG Meng, ZENG Zichao, et al. Wherewould I go next? Large language models as human mobility predictors[EB/OL]. [2023-11-03]. https://arxiv.org/abs/2308.15197v2. |
[100] | ZENG Qingbin, YANG Qinglong, DONG Shunan, et al. Perceive, reflect, and plan: designing LLM agent for goal-directed city navigation without instructions[EB/OL]. [2024-11-01]. https://arxiv.org/abs/2408.04168v3. |
[101] | CHEN Jiaqi, LIN Bingqian, XU Ran, et al. MapGPT: map-guided prompting with adaptive path planning for vision-and-language navigation[C]//Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics. Bangkok: ACL, 2024: 9796-9810. |
[102] | BALSEBRE P, HUANG Weiming, CONG Gao. LAMP: a language model on the map[EB/OL]. [2024-11-10]. https://arxiv.org/abs/2403.09059v2. |
[103] | MAI Gengchen, HUANG Weiming, SUN Jin, et al. On the opportunities and challenges of foundation models for geospatial artificial intelligence[EB/OL]. [2023-11-16]. https://arxiv.org/abs/2304.06798v1. |
[104] | YAMADA Y, BAO Yihan, LAMPINEN A K, et al. Evaluating spatial understanding of large language models[EB/OL]. [2023-11-11]. https://arxiv.org/abs/2310.14540v3. |
[105] | GRAMACKI P, MARTINS B, SZYMASKI P. Evaluation of code LLMs on geospatial code generation[EB/OL]. [2024-11-15]. https://arxiv.org/abs/2410.04617v2. |
[1] | Bin ZHANG, Shougeng HU, Haijun WANG, Ying GUO, Luyi TONG, Tianshun XIA. A CA-ABM-coupled simulation and prediction model for finely depicting the local self-organization process of urban expansion [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(7): 1429-1443. |
[2] | Shengjun TANG, Siqi DU, Weixi WANG, Renzhong GUO. 3D scene graph representation and application for intelligent indoor spaces [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(7): 1355-1370. |
[3] | . A spatio-temporal simulation and planning model for farmland conversion based on multi-agent systems [J]. Acta Geodaetica et Cartographica Sinica, 2011, 40(3): 366-372. |
[4] |
.
Distributed Computing Model of Mobile Spatial Information Service Grid
Based on Mobile Agent
[J]. Acta Geodaetica et Cartographica Sinica, 2009, 38(1): 0-11.
|
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||