Acta Geodaetica et Cartographica Sinica ›› 2014, Vol. 43 ›› Issue (6): 627-636.
Previous Articles Next Articles
Received:
Revised:
Online:
Published:
Abstract:
SOLAP has been applied to multi-dimensional analysis of remote sensing data recently. However, its computation performance faces a considerable challenge from the large-scale dataset. A geo-raster cube model extended by Map-Reduce is proposed, which refers to the application of Map-Reduce (a data-intensive computing paradigm) in the OLAP field. In this model, the existing methods are modified to adapt to distributed environment based on the multi-level raster tiles. Then the multi-dimensional map algebra is introduced to decompose the SOLAP computation into multiple distributed parallel map algebra functions on tiles under the support of Map-Reduce. The drought monitoring by remote sensing data is employed as a case study to illustrate the model construction and application. The prototype is also implemented, and the performance testing shows the efficiency and scalability of this model.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
URL: http://xb.chinasmp.com/EN/
http://xb.chinasmp.com/EN/Y2014/V43/I6/627