[1] GOLUB G H, VAN LOAN C F. An Analysis of the Total Least Squares Problem[J]. SIAM Journal on Numerical Analysis, 1980, 17(6): 883-893. [2] 王乐洋. 基于总体最小二乘的大地测量反演理论及应用研究[J]. 测绘学报, 2012, 41(4): 629. WANG Leyang. Research on Theory and Application of Total Least Squares in Geodetic Inversion[J]. Acta Geodaetica et Cartographica Sinica, 2012, 41(4): 629. [3] 王乐洋, 许才军. 总体最小二乘研究进展[J]. 武汉大学学报(信息科学版), 2013, 38(7): 850-856. WANG Leyang, XU Caijun. Progress in Total Least Squares[J]. Geomatics and Information Science of Wuhan University, 2013, 38(7): 850-856. [4] XU Peiliang, LIU Jingnan, SHI Chuang. Total Least Squares Adjustment in Partial Errors-in-Variables Models: Algorithm and Statistical Analysis[J]. Journal of Geodesy, 2012, 86(8): 661-675. [5] 王乐洋, 余航, 陈晓勇. Partial EIV模型的解法[J]. 测绘学报, 2016, 45(1): 22-29. DOI: 10.11947/j.AGCS.2016.20140560. WANG Leyang, YU Hang, CHEN Xiaoyong. An Algorithm for Partial EIV Model[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(1): 22-29. DOI: 10.11947/j.AGCS.2016.20140560. [6] 刘经南, 曾文宪, 徐培亮. 整体最小二乘估计的研究进展[J]. 武汉大学学报(信息科学版), 2013, 38(5): 505-512. LIU Jingnan, ZENG Wenxian, XU Peiliang. Overview of Total Least Squares Methods[J]. Geomatics and Information Science of Wuhan University, 2013, 38(5): 505-512. [7] 王乐洋, 于冬冬. 病态总体最小二乘问题的虚拟观测解法[J]. 测绘学报, 2014, 43(6): 575-581. DOI: 10.13485/j.cnki.11-2089.2014.0091. WANG Leyang, YU Dongdong. Virtual Observation Method to Ill-posed Total Least Squares Problem[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(6): 575-581. DOI: 10.13485/j.cnki.11-2089.2014.0091. [8] 王乐洋, 许才军, 鲁铁定. 病态加权总体最小二乘平差的岭估计解法[J]. 武汉大学学报(信息科学版), 2010, 35(11): 1346-1350. WANG Leyang, XU Caijun, LU Tieding. Ridge Estimation Method in Ill-posed Weighted Total Least Squares Adjustment[J]. Geomatics and Information Science of Wuhan University, 2010, 35(11): 1346-1350. [9] 王乐洋, 于冬冬, 吕开云. 复数域总体最小二乘平差[J]. 测绘学报, 2015, 44(8): 866-876. DOI: 10.11947/j.AGCS.2015.20130701. WANG Leyang, YU Dongdong, LV Kaiyun. Complex Total Least Squares Adjustment[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(8): 866-876. DOI: 10.11947/j.AGCS.2015.20130701. [10] FANG Xing. Weighted Total Least Squares: Necessary and Sufficient Conditions, Fixed and Random Parameters[J]. Journal of Geodesy, 2013, 87(8): 733-749. [11] FANG Xing. Weighted Total Least Squares Solutions for Applications in Geodesy[D]. Germany: Leibniz Universität Hannover, 2011. [12] SNOW K. Topics in Total Least-squares Adjustment within the Errors-in-variables Model: Singular Cofactor Matrices and Prior Information[D]. Ohio: The Ohio State University, 2012. [13] SCHAFFRIN B, WIESER A. On Weighted Total Least-Squares Adjustment for Linear Regression[J]. Journal of Geodesy, 2008, 82(7): 415-421. [14] WANG Leyang, XU Guangyu. Variance Component Estimation for Partial Errors-in-Variables Models[J]. Studia Geophysica et Geodaetica, 2016, 60(1): 35-55. [15] 崔希璋, 於宗俦, 陶本藻, 等. 广义测量平差[M]. 武汉: 武汉大学出版社, 2005. CUI Xizhang, YU Zongchou, TAO Benzao, et al. Generalized Surveying Adjustment[M]. Wuhan: Wuhan University Press, 2005. [16] XU Peiliang, LIU Jingnan. Variance Components in Errors-in-Variables Models: Estimability, Stability and Bias Analysis[J]. Journal of Geodesy, 2014, 88(8): 719-734. [17] 刘志平, 张书毕. 方差-协方差分量估计的概括平差因子法[J]. 武汉大学学报(信息科学版), 2013, 38(8): 925-929. LIU Zhiping, ZHANG Shubi. Variance-covariance Component Estimation Method Based on Generalization Adjustment Factor[J]. Geomatics and Information Science of Wuhan University, 2013, 38(8): 925-929. [18] 王乐洋, 许才军, 张朝玉. 一种确定联合反演中相对权比的两步法[J]. 测绘学报, 2012, 41(1): 19-24. WANG Leyang, XU Caijun, ZHANG Chaoyu. A Two-step Method to Determine Relative Weight Ratio Factors in Joint Inversion[J]. Acta Geodaetica et Cartographica Sinica, 2012, 41(1): 19-24. [19] AMIRI-SIMKOOEI A. Least-squares Variance Component Estimation: Theory and GPS Applications[D]. Delft: Delft University of Technology, 2007. [20] TEUNISSEN P J G, AMIRI-SIMKOOEI A R. Least-squares Variance Component Estimation[J]. Journal of Geodesy, 2008, 82(2): 65-82. [21] AMIRI-SIMKOOEI A R. Application of Least Squares Variance Component Estimation to Errors-in-Variables Models[J]. Journal of Geodesy, 2013, 87(10-12): 935-944. [22] AMIRI-SIMKOOEI A R. Non-negative Least-squares Variance Component Estimation with Application to GPS Time Series[J]. Journal of Geodesy, 2016, 90(5): 451-466. [23] 赵俊, 郭建锋. 方差分量估计的通用公式[J]. 武汉大学学报(信息科学版), 2013, 38(5): 580-583, 588. ZHAO Jun, GUO Jianfeng. Auniversal Formula of Variance Component Estimation[J]. Geomatics and Information Science of Wuhan University, 2013, 38(5): 580-583, 588. [24] VAN HUFFEL S, VANDEWALLE J. The Total Least Squares Problem: Computational Aspects and Analysis[M]. Philadelphia: Society for Industrial and Applied Mathematic, 1991. [25] 曾文宪. 系数矩阵误差对EIV模型平差结果的影响研究[D]. 武汉: 武汉大学, 2013. ZENG Wenxian. Effect of the Random Design Matrix on Adjustment of An EIV Model and Its Reliability Theory[D]. Wuhan: Wuhan University, 2013. [26] 许光煜. Partial EIV模型的总体最小二乘方法及应用研究[D]. 南昌: 东华理工大学, 2016. XU Guangyu. The Total Least Squares Method and Its Application of Partial Errors-in-variables Model[D]. Nanchang: East China University of Technology, 2016. [27] LAWSON C L, HANSON R J. Solving Least Squares Problems[M]. Philadelphia: SIAM, 1995. [28] FRANC V, HLAVÁČ V, NAVARA M. Sequential Coordinate-wise Algorithm for the Non-negative Least Squares Problem[C]//Proceedings of the 11th International Conference on Computer Analysis of images and Patterns. Berlin Heidelberg: Springer, 2005: 407-414. [29] MAHBOUB V. On Weighted Total Least-Squares for Geodetic Transformations[J]. Journal of Geodesy, 2012, 86(5): 359-367. [30] AMIRI-SIMKOOEI A, JAZAERI S. Weighted Total Least Squares Formulated by Standard Least Squares Theory[J]. Journal of Geodetic Science, 2012, 2(2): 113-124. |