[1] HEISKANEN W A, MORITZ H. Physical geodesy[M]. San Francisco:W. H. Freeman and Company, 1967. [2] JEKELI C. The exact transformation between ellipsoidal and spherical harmonic expansions[J]. Manuscripta Geodaetica, 1988, 13:106-113. [3] CLAESSENS S J, FEATHERSTONE W E. The Meissl scheme for the geodetic ellipsoid[J]. Journal of Geodesy, 2008, 82(8):513-522. [4] CLAESSENS S J. Spherical harmonic analysis of a harmonic function given on a spheroid[J]. Geophysical Journal International, 2016, 206(1):142-151. [5] THONG N C, GRAFAREND E W. A spheroidal harmonic model of the terrestrial gravitational field[J]. Manuscripta Geodaetica, 1989, 14(5):285-304. [6] SONA G. Numerical problems in the computation of ellipsoidal harmonics[J]. Journal of Geodesy, 1995, 70(1-2):117-126. [7] MARTINEC Z, GRAFAREND E W. Solution to the Stokes boundary-value problem on an ellipsoid of revolution[J]. Studia Geophysica et Geodaetica, 1997, 41(2):103-129. [8] GIL A, SEGURA J. A code to evaluate prolate and oblate spheroidal harmonics[J]. Computer Physics Communications, 1998, 108(2-3):267-278. [9] SEBERA J, BOUMAN J, BOSCH W. On computing ellipsoidal harmonics using Jekeli's renormalization[J]. Journal of Geodesy, 2012, 86(9):713-726. [10] FUKUSHIMA T. Recursive computation of oblate spheroidal harmonics of the second kind and their first-, second-, and third-order derivatives[J]. Journal of Geodesy, 2013, 87(4):303-309. [11] YU Jinghai, CAO Huasheng. Elliptical harmonic series and the original stokes problem with the boundary of the reference ellipsoid[J]. Journal of Geodesy, 1996, 70(7):431-439. [12] BUCHDAHL H A, BUCHDAHL N P, STILES P J. On a relation between spherical and spheroidal harmonics[J]. Journal of Physics A:Mathematical and General, 1977, 10(11):1833-1836. [13] DECHAMBRE D, SCHEERES D J. Transformation of spherical harmonic coefficients to ellipsoidal harmonic coefficients[J]. Astronomy & Astrophysics, 2002, 387(3):1114-1122. [14] GLEASON D M. Comparing ellipsoidal corrections to the transformation between the geopotential's spherical and ellipsoidal spectrums[J]. Manuscripta Geodaetica, 1988, 13(2):114-129. [15] HU Xuanyu, JEKELI C. A numerical comparison of spherical, spheroidal and ellipsoidal harmonic gravitational field models for small non-spherical bodies:examples for the Martian moons[J]. Journal of Geodesy, 2015, 89(2):159-177. [16] KONOPLIV A S, ASMAR S W, BILLS B G, et al. The Dawn gravity investigation at Vesta and Ceres[J]. Space Science Reviews, 2011, 163(1-4):461-486. [17] MORITZ H. Advanced physical geodesy[M]. Karlsruhe:Herbert Wichmann, 1980. [18] PARK R S, KONOPLIV A S, ASMAR S W, et al. Gravity field expansion in ellipsoidal harmonic and polyhedral internal representations applied to Vesta[J]. Icarus, 2014, 240(6):118-132. [19] PEARSON J. Computation of hypergeometric functions[D]. Oxford:University of Oxford, 2009. [20] SANSÒ F, TSCHERNING C C. Fast spherical collocation:theory and examples[J]. Journal of Geodesy, 2003, 77(1-2):101-112. [21] VERSHKOV A N. Determination of the spherical harmonic coefficients from the ellipsoidal harmonic coefficients of the Earth's external potential[J]. Artificial Satellites, 2002, 37(4):157-168. [22] WALTER H G. Association of spherical and ellipsoidal gravity coefficients of the Earth's potential[J]. Celestial Mechanics, 1970, 2(3):389-397. [23] HU Xuanyu. The exact transformation from spherical harmonic to ellipsoidal harmonic coefficients for gravitational field modeling[J]. Celestial Mechanics and Dynamical Astronomy, 2016, 125(2):195-222. [24] 于锦海, 曾艳艳, 朱永超, 等. 超高阶次Legendre函数的跨阶数递推算法[J]. 地球物理学报, 2015, 58(3):748-755. YU Jinhai, ZENG Yanyan, ZHU Yongchao, et al. A recursion arithmetic formula for Legendre functions of ultra-high degree and order on every other degrees[J]. Chinese Journal of Geophysics, 58(3):748-755. [25] 于锦海. 地球重力场椭球谐模型的建立[J]. 解放军测绘学院学报, 1994(4):309-317. YU Jinhai. Elliptical harmonic model about the Earth's gravity field[J]. Journal of the PLA Institute of Surveying and Mapping, 1994(4):309-317. [26] 张传定. 大地测量应用卫星的轨道设计——椭球谐引力场下卫星的运动[J]. 测绘学报, 2000, 29(z1):80-85. ZHANG Chuanding. Orbital design of satellite for geodetic applications[J]. Acta Geodaetica et Cartographica Sinica, 2000, 29(z1):80-85. [27] 于锦海. O(T2)精度下椭球界面Dirichlet边值问题的积分解[J]. 地球物理学报, 2004, 47(1):75-80. YU Jinhai. The integral solution of the Dirichlet's boundary value problem on the ellipsoid interface with the accuracy of O(T2)[J]. Chinese Journal of Geophysics, 2004, 47(1):75-80. [28] YU Jinghai, WU Xiaoping. The solution of mixed boundary value problems with the reference ellipsoid as boundary[J]. Journal of Geodesy, 1997, 71(8):454-460. |