[1] MATTHAEI R, BAGSCHIK G, MAURER M. Map-relative localization in lane-level maps for ADAS and autonomous driving[C]//2014 IEEE Intelligent Vehicles Symposium Proceedings. Dearborn, Michigan:IEEE, 2014:49-55. [2] SHIM I, CHOI J, SHIN S, et al. An autonomous driving system for unknown environments using a unified map[J]. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(4):1999-2013. [3] JO K, SUNWOO M. Generation of a precise roadway map for autonomous cars[J]. IEEE Transactions on Intelligent Transportation Systems, 2014, 15(3):925-937. [4] SAE International. Taxonomy and definitions for terms related to driving automation systems for on-road motor vehicles[S]. SAE International, 2016. [5] 刘少山, 唐洁, 吴双, 等. 第一本无人驾驶技术书[M]. 北京:电子工业出版社, 2017:180-191. LIU Shaoshan, TANG Jie, WU Shuang, et al. The first book on driverless technology[M]. Beijing:Publishing House of Electronics Industry, 2017:180-191. [6] GUO Chi, GUO Wenfei, CAO Guangyi, et al. A lane-level LBS system for vehicle network with high-precision BDS/GPS positioning[J]. Computational Intelligence and Neuroscience, 2015, 2015:Article ID 531321. [7] LEVINSON J, MONTEMERLO M, THRUN S. Map-based precision vehicle localization in urban environments[C]//Proceedings of Robotics:Science and Systems Ⅲ. Atlanta, GA:Georgia Institute of Technology, 2007. [8] BAUER S, ALKHORSHID Y, WANIELIK G. Using high-definition maps for precise urban vehicle localization[C]//Proceedings of the 2016 IEEE 19th International Conference on Intelligent Transportation Systems. Rio de Janeiro, Brazil:IEEE, 2016:492-497. [9] SEIF H G, HU Xiaolong. Autonomous driving in the iCity-HD maps as a key challenge of the automotive industry[J]. Engineering, 2016, 2(2):159-162. [10] LEVINSON J, THRUN S. Robust vehicle localization in urban environments using probabilistic maps[C]//Proceedings of the 2010 IEEE International Conference on Robotics and Automation. Anchorage, Alaska:IEEE, 2010:4372-4378. [11] SCHREIBER M, KNÖPPEL C, FRANKE U. LaneLoc:lane marking based localization using highly accurate maps[C]//2013 IEEE Intelligent Vehicles Symposium (IV). Gold Coast City, Australia:IEEE, 2013:449-454. [12] FAIRFIELD N, URMSON C. Traffic light mapping and detection[C]//Proceedings of the 2011 IEEE International Conference on Robotics and Automation. Shanghai:IEEE, 2011:5421-5426. [13] 陈棉, 刘晓枚, 沈春迎. 多媒体电子地图的信息传递[J]. 测绘科学, 2003, 28(3):23-26. CHEN Mian, LIU Xiaomei, SHEN Chunying. Multimedia electronic map (atlas) information transfer[J]. Science of Surveying and Mapping, 2003, 28(3):23-26. [14] 王家耀. 时空大数据时代的地图学[J]. 测绘学报, 2017, 46(10):1226-1237. DOI:10.11947/j.AGCS.2017.20170308. WANG Jiayao. Cartography in the age of spatio-temporal big data[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10):1226-1237. DOI:10.11947/j.AGCS.2017.20170308. [15] 刘芳, 游雄, 於建峰, 等. 网络地图的信息传输模型研究[J]. 测绘通报, 2009(10):15-17. LIU Fang, YOU Xiong, YU Jianfeng, et al. A study of information transmission model of web map[J]. Bulletin of Surveying and Mapping, 2009(10):15-17. [16] 马京振, 孙群, 肖强, 等. 基于自发地理信息的空间信息传输研究[J]. 地理空间信息, 2016, 14(7):9-11, 19. MA Jingzhen, SUN Qun, XIAO Qiang, et al. Research on spatial information transmission based on volunteered geographical information[J]. Geospatial Information, 2016, 14(7):9-11, 19. [17] 杨振凯. 个性化地图的信息传输模型初探[J]. 地理空间信息, 2018, 16(9):55-57. YANG Zhenkai. Research on information transmission model of personalized map[J]. Geospatial Information, 2018, 16(9):55-57. [18] 王家耀, 武芳, 郭建忠, 等. 时空大数据面临的挑战与机遇[J]. 测绘科学, 2017, 42(7):1-7. WANG Jiayao, WU Fang, GUO Jianzhong, et al. Challenges and opportunities of spatio-temporal big data[J]. Science of Surveying and Mapping, 2017, 42(7):1-7. [19] 王家耀. 地图制图学与地理信息工程学科发展趋势[J]. 测绘学报, 2010, 39(2):115-119, 128. WANG Jiayao. Development trends of cartography and geographic information engineering[J]. Acta Geodaetica et Cartographica Sinica, 39(2):115-119, 128. [20] 《中国公路学报》编辑部. 中国汽车工程学术研究综述·2017[J]. 中国公路学报, 2017, 30(6):1-197. Editorial Department of China Journal of Highway and Transport. Review on China's automotive engineering research progress:2017[J]. China Journal of Highway and Transport, 2017, 30(6):1-197. [21] 贺勇, 路昊, 王春香, 等. 基于多传感器的车道级高精细地图制作方法[J]. 长安大学学报(自然科学版), 2015, 35(S1):274-278. HE Yong, LU Hao, WANG Chunxiang, et al. Generation of precise lane-level maps based on multi-sensors[J]. Journal of Chang'an University (Natural Science Edition), 2015, 35(S1):274-278. [22] LIU Chaoran, JIANG Kun, YANG Diange, et al. Design of a multi-layer lane-level map for vehicle route planning[C]//MATEC Web of Conferences. France:EDP Sciences, 2017. [23] Navigation Data Standard. Publishing high-accuracy map standard for companies:industrial consortium pushes autonomous driving[EB/OL]. (2016-09-14). https://www.nds-association.org/wp-content/uploads/20160914-PR-E.pdf. [24] SHIMADA H, YAMAGUCHI A, TAKADA H, et al. Implementation and evaluation of local dynamic map in safety driving systems[J]. Journal of Transportation Technologies, 2015, 5(2):102-112. [25] DUPUIS M, STROBL M, GREZLIKOWSKI H. OpenDRIVE 2010 and beyond-status and future of the de facto standard for the description of road networks[C]//Proceedings of the Driving Simulation Conference DSC Europe. Paris, 2010:231-242. [26] 刘经南, 吴杭彬, 郭迟, 等. 高精度道路导航地图的进展与思考[J]. 中国工程科学, 2018, 20(2):99-105. LIU Jingnan, WU Hangbin, GUO Chi, et al. Progress and consideration of high precision road navigation map[J]. Engineering Science, 2018, 20(2):99-105. [27] THRUN S, BURGARD W, FOX D. Probabilistic robotics[M]. Cambridge, Massachusetts:MIT Press, 2005. [28] 边缘计算产业联盟. 边缘计算参考架构2.0[EB/OL]. (2018-04-05). http://www.ecconsortium.net/Lists/index/cid/11.html. Edge Computing Consortium. Edge computing reference architecture 2.0[EB/OL]. (2018-04-05). http://www.ecconsortium.net/Lists/index/cid/11.html. [29] SATYANARAYANAN M. The emergence of edge computing[J]. Computer, 2017, 50(1):30-39. [30] SHI Weisong, CAO Jie, ZHANG Quan, et al. Edge computing:vision and challenges[J]. IEEE Internet of Things Journal, 2016, 3(5):637-646. [31] 阿里云计算有限公司, 中国电子技术标准化研究院, 等. 边缘云计算技术及标准化白皮书(2018)[EB/OL]. (2018-12-14). http://www.cesi.cn/images/editor/20181214/20181214115429307.pdf. Alibaba Cloud Computing Co. Ltd., China Electronics Standardization Institute, et al. White paper on edge cloud computing technology and standardization(2018)[EB/OL]. (2018-12-14). http://www.cesi.cn/images/editor/20181214/20181214115429307.pdf. [32] 冯剑红, 李国良, 冯建华. 众包技术研究综述[J]. 计算机学报, 2015, 38(9):1713-1726. FENG Jianhong, LI Guoliang, FENG Jianhua. A survey on crowdsourcing[J]. Chinese Journal of Computers, 2015, 38(9):1713-1726. [33] HINTON G E, SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786):504-507. [34] 张新钰, 高洪波, 赵建辉, 等. 基于深度学习的自动驾驶技术综述[J]. 清华大学学报(自然科学版), 2018, 58(4):438-444. ZHANG Xinyu, GAO Hongbo, ZHAO Jianhui, et al. Overview of deep learning intelligent driving methods[J]. Journal of Tsinghua University (Science and Technology), 2018, 58(4):438-444. [35] 王科俊, 赵彦东, 邢向磊. 深度学习在无人驾驶汽车领域应用的研究进展[J]. 智能系统学报, 2018, 13(1):55-69. WANG Kejun, ZHAO Yandong, XING Xianglei. Deep learning in driverless vehicles[J]. CAAI Transactions on Intelligent Systems, 2018, 13(1):55-69. [36] WONG N, CHAMBERS C, STOL K, et al. Autonomous vehicle following using a robotic driver[C]//Proceedings of the 15th International Conference on Mechatronics and Machine Vision in Practice. Auckland, New Zealand:IEEE, 2008:115-120. [37] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once:unified, real-time object detection[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV:IEEE, 2016:779-788. [38] WANG Xiaolong, GUPTA A. Generative image modeling using style and structure adversarial networks[C]//Proceedings of the 14th European Conference on Computer Vision. Amsterdam, The Netherlands:Springer, 2016:318-335. [39] LIU Wei, ANGUELOV D, ERHAN D, et al. SSD:single shot MultiBox detector[C]//Proceedings of the 14th European Conference on Computer Vision. Amsterdam, The Netherlands:Springer, 2016:21-37. [40] HE Kaiming, GKIOXARI G, DOLLÁR P, et al. Mask R-CNN[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Venice, Italy:IEEE, 2017:2980-2988. [41] ZHAO Hengshuang, SHI Jianping, QI Xiaojuan, et al. Pyramid scene parsing network[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, Hawaii:IEEE, 2017:6230-6239. [42] ZHANG Shifeng, WEN Longyin, BIAN Xiao, et al. Single-shot refinement neural network for object detection[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA:IEEE, 2018:4203-4212. [43] GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial networks[Z]. eprint arXiv:1406.2661, 2014. [44] ARJOVSKY M, CHINTALA S, BOTTOU L. Wasserstein generative adversarial networks[C]//Proceedings of the 34th International Conference on Machine Learning. Sydney, Australia:IMLS, 2017:214-223. [45] CRESWELL A, WHITE T, DUMOULIN V, et al. Generative adversarial networks:an overview[J]. IEEE Signal Processing Magazine, 2018, 35(1):53-65. [46] FISCHER T, KRAUSS C. Deep learning with long short-term memory networks for financial market predictions[J]. European Journal of Operational Research, 2018, 270(2):654-669. [47] SHARMA S, KIROS R, SALAKHUTDINOV R. Action recognition using visual attention[Z]. arXiv:1511.04119, 2015. [48] ZHAO Zhongqiu, ZHENG Peng, XU Shoutao, et al. Object detection with deep learning:a review[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019. DOI:10.1109/TNNLS.2018.2876865. [49] DONG Chao, LOY C C, HE Kaiming, et al. Image super-resolution using deep convolutional networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(2):295-307. [50] DONG Chao, LOY C C, HE Kaiming, et al. Learning a deep convolutional network for image super-resolution[C]//Proceedings of the 13th European Conference on Computer Vision. Zurich, Switzerland:Springer, 2014:184-199. [51] LEDIG C, THEIS L, HUSZÁR F, et al. Photo-realistic single image super-resolution using a generative adversarial network[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, Hawaii:IEEE, 2017:105-114. [52] YANG Xue, TANG Luliang, NIU Le, et al. Generating lane-based intersection maps from crowdsourcing big trace data[J]. Transportation Research Part C:Emerging Technologies, 2018(89):168-187. [53] YANG Xue, TANG Luliang, STEWART K, et al. Automatic change detection in lane-level road networks using GPS trajectories[J]. International Journal of Geographical Information Science, 2018, 32(3):601-621. [54] PATHAK D, KRÄHENBVHL P, DONAHUE J, et al. Context encoders:feature learning by inpainting[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas:IEEE, 2016:2536-2544. [55] YANG Chao, LU Xin, LIN Zhe, et al. High-resolution image inpainting using multi-scale neural patch synthesis[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, Hawaii:IEEE, 2017:4076-4084. [56] YEH R A, CHEN Chen, YIAN LIM T, et al. Semantic image inpainting with deep generative models[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, Hawaii:IEEE, 2017:6882-6890. [57] 李克强, 戴一凡, 李升波, 等. 智能网联汽车(ICV)技术的发展现状及趋势[J]. 汽车安全与节能学报, 2017, 8(1):1-14. LI Keqiang, DAI Yifan, LI Shengbo, et al. State-of-the-art and technical trends of intelligent and connected vehicles[J]. Journal of Automotive Safety and Energy, 2017, 8(1):1-14. [58] ZANG Andi, LI Zichen, DORIA D, et al. Accurate vehicle self-localization in high definition map dataset[C]//Proceedings of the 1st ACM SIGSPATIAL Workshop on High-Precision Maps and Intelligent Applications for Autonomous Vehicles. Redondo Beach, California:ACM, 2017:Article No. 2. [59] WAN Guowei, YANG Xiaolong, CAI Renlan, et al. Robust and precise vehicle localization based on multi-sensor fusion in diverse city scenes[C]//Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA). Brisbane, Australia:IEEE, 2018:4670-4677. [60] THRUN S. Learning occupancy grid maps with forward sensor models[J]. Autonomous Robots, 2003, 15(2):111-127. [61] OHYA A, NAGASHIMA Y, YUTA S I. Exploring unknown environment and map construction using ultrasonic sensing of normal direction of walls[C]//Proceedings of the 1994 IEEE International Conference on Robotics and Automation. San Diego, CA:IEEE, 1994:485-492. [62] TOMONO M. 3-D object map building using dense object models with sift-based recognition features[C]//Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems. Beijing:IEEE, 2006:1885-1890. [63] KOSTAVELIS I, GASTERATOS A. Semantic mapping for mobile robotics tasks:a survey[J]. Robotics and Autonomous Systems, 2015(66):86-103. [64] HIETANEN S. Mobility as a service[Z]. The New Transport Model, 2014:2-4. [65] JITTRAPIROM P, CAIATI V, FENERI A M, et al. Mobility as a service:a critical review of definitions, assessments of schemes, and key challenges[J]. Urban Planning, 2017, 2(2):13-25. [66] GOODALL W, DOVEY T D, BORNSTEIN J, et al. The rise of mobility as a service[J]. Deloitte Review, 2017(20):112-129. |