[1] FOROOTAN E, KUSCHE J. Separation of global time-variable gravity signals into maximally independent components[J]. Journal of Geodesy, 2012, 86(7):477-497. [2] HERAULT J, JUTTEN C. Space or time adaptive signal processing by neural network models[C]//Proceedings of American Institute of Physics AIP Conference Melville:AIP Publishing, 1986, 151:206-211. [3] COMON P. Independent component analysis, a new concept?[J]. Signal Processing, 1994, 36(3):287-314. [4] CARDOSO J F. Fourth-order cumulant structure forcing:application to blind array processing[C]//Proceedings of the 6th IEEE Signal Processing Workshop on Statistical Signal and Array Processing. Victoria, BC, Canada:IEEE, 1992:136-139. [5] HYVÄRINEN A. Fast and robust fixed-point algorithms for independent component analysis[J]. IEEE Transactions on Neural Networks, 1999, 10(3):626-634. [6] HYVÄRINEN A, OJA E. Independent component analysis:algorithms and applications[J]. Neural Networks, 2000, 13(4-5):411-430. [7] 宁津生, 王正涛. 测绘学科发展综述[J]. 测绘科学, 2006, 31(1):9-16. NING Jinsheng, WANG Zhengtao. A summary of the newest progress of Surveying and Mapping[J]. Science of Surveying and Mapping, 2006, 31(1):9-16. [8] FRAPPART F, RAMILLIEN G, MAISONGRANDE P, et al. Denoising satellite gravity signals by independent component analysis[J]. IEEE Geoscience and Remote Sensing Letters, 2010, 7(3):421-425. [9] MIDDLETON M A, WHITFIELD P H, ALLEN D M, et al. Independent component analysis of local-scale temporal variability in sediment-water interface temperature[J]. Water Resources Research, 2015, 51(12):9679-9695. [10] FOROOTAN E, AWANGE J L, KUSCHE J, et al. Independent patterns of water mass anomalies over Australia from satellite data and models[J]. Remote Sensing of Environment, 2012, 124:427-443. [11] BANERJEE C, KUMAR D N. Analyzing large-scale hydrologic processes using grace and hydrometeorological datasets[J]. Water Resources Management, 2018, 32(13):4409-4423. [12] 王陈燕, 万祥禹. 中国西南及中南半岛陆地水变化的独立成分分析[J]. 测绘与空间地理信息, 2019, 42(6):43-46. WANG Chengyan, WAN Xiangyu. Independent component analysis of terrestrial water over southwest China and Indochina Peninsula[J]. Geomatics & Spatial Information Technology, 2019, 42(6):43-46. [13] 文汉江, 黄振威, 王友雷, 等. 青藏高原及其周边地区水储量变化的独立成分分析[J]. 测绘学报, 2016, 45(1):9-15. DOI:10.11947/j.AGCS.2016.20140447. WEN Hanjiang, HUANG Zhenwei, WANG Youlei, et al. Independent component analysis of water storage changes interpretation over Tibetan plateau and its surrounding areas[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(1):9-15. DOI:10.11947/j.AGCS.2016.20140447. [14] LIU Xin, ZHAO Ning, GUO Jinyun, et al. Equivalent water height changes over Qinghai-Tibet Plateau determined from GRACE with an independent component analysis approach[J]. Arabian Journal of Geosciences, 2020, 13(4):179. [15] HYVÄRINEN A, KARHUNEN J, OJA E. Independent component analysis[M]. New York:John Wiley & Sons, 2001:134-135, 185-192. [16] CHENG Minkang, TAPLEY B D. Variations in the Earth's oblateness during the past 28 years[J]. Journal of Geophysical Research:Solid Earth, 2004, 109(B9):B09402. [17] WAHR J, MOLENAAR M, BRYAN F. Time variability of the Earth's gravity field:Hydrological and oceanic effects and their possible detection using GRACE[J]. Journal of Geophysical Research, 1998, 103(B12):30205-30229. [18] SWENSON S, CHAMBERS D, WAHR J. Estimating geocenter variations from a combination of GRACE and ocean model output[J]. Journal of Geophysical Research, 2008, 113(B8):B08410. [19] SWENSON S, WAHR J. Post-processing removal of correlated errors in GRACE data[J]. Geophysical Research Letters, 2006, 33(8):L08402. [20] AWANGE J L, GEBREMICHAEL M, FOROOTAN E, et al. Characterization of Ethiopian mega hydrogeological regimes using GRACE, TRMM and GLDAS Datasets[J]. Advances in Water Resources, 2014, 74:64-78. [21] SCANLON B R, LONGUEVERGNE L, LONG D. Ground referencing GRACE satellite estimates of groundwater storage changes in the California Central Valley, USA[J]. Water Resources Research, 2012, 48(4):W04520. [22] BOERGENS E, RANGELOVA E, SIDERIS M G, et al. Assessment of the capabilities of the temporal and spatiotemporal ICA method for geophysical signal separation in GRACE data[J]. Journal of Geophysical Research, 2014, 119(5):4429-4447. [23] HYVÄRINEN A. New approximations of differential entropy for independent component analysis and projection pursuit[C]//JORDAN M I, KEARNS M J, SOLLA S A. Proceedings of Advances in Neural Information. Cambridge:MIT Press, 1998, 151:273-279. [24] HYVÄRINEN A, OJA E. Independent component analysis:algorithms and applications[J]. Neural Networks, 2000, 13(4-5):411-430. [25] FOROOTAN E, KUSCHE J. Separation of deterministic signals using independent component analysis (ICA)[J]. Studia Geophysica Et Geodaetica, 2013, 57(1):17-26. [26] YI Shuang, SUN Wenke. Evaluation of glacier changes in high-mountain Asia based on 10 year GRACE RL05 models[J]. Journal of Geophysical Research, 2014, 119(3):2504-2517. [27] JACOB T, WAHR J, PFEFFER W T, et al. Recent contributions of glaciers and ice caps to sea level rise[J]. Nature, 2012, 482(7386):514-518. [28] ZHANG Guoqing, YAO Tandong, XIE Hongjie, et al. Increased mass over the Tibetan Plateau:From lakes or glaciers?[J]. Geophysical Research Letters, 2013, 40(10):2125-2130. [29] LORENZ E N. Deterministic nonperiodic flow[J]. Journal of the Atmospheric Sciences, 1963, 20(2):130-141. [30] 杨培才, 周秀骥. 气候系统的非平稳行为和预测理论[J]. 气象学报, 2005, 63(5):556-570. YANG Peicai, ZHOU Xiuji. On nonstationary behaviors and prediction theory of climate systems[J]. Acta Meteorologica Sinica, 2005, 63(5):556-570. [31] PACKARD N H, CRUTCHFIELD J P, FARMER J D, et al. Geometry from a time series[J]. Physical Review Letters, 1980, 45(9):712-716. [32] 冯伟. 区域陆地水与海平面变化的卫星重力监测研究[D]. 武汉:中国科学院大学, 2013:43-44. FENG Wei. Regional terrestrial water storage and sea level variations inferred from satellite gravimetry[D]. Wuhan:University of Chinese Academy of Sciences, 2013:43-44. [33] ZOU Rong, WANG Qi, FREYMUELLER J T, et al. Seasonal hydrological loading in southern tibet detected by joint analysis of GPS and GRACE[J]. Sensors, 2015, 15(12):30525-30538. [34] LI Ying, SU Fengge, CHEN Deliang, et al. Atmospheric water transport to the Endorheic Tibetan Plateau and its effect on the hydrological status in the region[J]. Journal of Geophysical Research:Atmospheres, 2019, 124(23):12864-12881. [35] 王磊, 李秀萍, 周璟, 等. 青藏高原水文模拟的现状及未来[J]. 地球科学进展, 2014, 29(6):674-682. WANG Lei, LI Xiuping, ZHOU Jing, et al. Hydrological modelling over the Tibetan Plateau:Current status and perspective[J]. Advances in Earth Science, 2014, 29(6):674-682. [36] 张燕, 程顺有, 赵炳坤, 等. 青藏高原构造结构特点:新重力异常成果的启示[J]. 地球物理学报, 2013, 56(4):1369-1380. ZHANG Yan, CHENG Shunyou, ZHAO Bingkun, et al. The feature of tectonics in the Tibet Plateau from new regional gravity signals[J]. China Journal of Geophysics, 2013, 56(4):1369-1380. [37] 刘杰, 方剑, 李红蕾, 等. 青藏高原GRACE卫星重力长期变化[J]. 地球物理学报, 2015, 58(10):3496-3506. LIU Jie, FANG Jian, LI Honglei, et al. Secular variation of gravity anomalies within the Tibetan Plateau derived from GRACE data[J]. Chinese Journal of Geophysics, 2015, 58(10):3496-3506. [38] TIWARI V M, WAHR J, SWENSON S. Dwindling groundwater resources in northern India, from satellite gravity observations[J]. Geophysical Research Letters, 2009, 36(18):L18401. [39] MATSUO K, HEKI K. Time-variable ice loss in Asian high mountains from satellite gravimetry[J]. Earth and Planetary Science Letters, 2010, 290(1-2):30-36. |